已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fully Transformer Network for Skin Lesion Analysis

计算机科学 卷积神经网络 变压器 人工智能 模式识别(心理学) 联营
作者
Xinzi He,Ee-Leng Tan,Hanwen Bi,Xuzhe Zhang,Shijie Zhao,Baiying Lei
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:: 102357-102357
标识
DOI:10.1016/j.media.2022.102357
摘要

• We propose an FTN which is fully relied on Transformer. • We leverage sliding window tokenization to construct hierarchical features. • Spatial Pyramid Transformer to increase efficiency. • Transformer Decoder is proposed to aggregate hierarchical features. Automatic skin lesion analysis in terms of skin lesion segmentation and disease classification is of great importance. However, these two tasks are challenging as skin lesion images of multi-ethnic population are collected using various scanners in multiple international medical institutes. To address them, most recent works adopt convolutional neural networks (CNNs) for skin lesion analysis. However, due to the intrinsic locality of the convolution operator, CNNs lack the ability to capture contextual information and long-range dependency. To improve the baseline performance established by CNNs, we propose a Fully Transformer Network (FTN) to learn long-range contextual information for skin lesion analysis. FTN is a hierarchical Transformer computing features using Spatial Pyramid Transformer (SPT). SPT has linear computational complexity as it introduces a spatial pyramid pooling (SPP) module into multi-head attention (MHA)to largely reduce the computation and memory usage. We conduct extensive skin lesion analysis experiments to verify the effectiveness and efficiency of FTN using ISIC 2018 dataset. Our experimental results show that FTN consistently outperforms other state-of-the-art CNNs in terms of computational efficiency and the number of tunable parameters due to our efficient SPT and hierarchical network structure. The code and models will be public available at: https://github.com/Novestars/Fully-Transformer-Network .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思想的小鱼完成签到,获得积分10
刚刚
2秒前
虬江学者完成签到,获得积分10
2秒前
周沛应助火星上的世立采纳,获得30
3秒前
dovejingling完成签到,获得积分10
4秒前
君君完成签到,获得积分10
4秒前
magiczhu完成签到,获得积分10
5秒前
学医梅西发布了新的文献求助10
6秒前
lyy66964193完成签到,获得积分10
7秒前
FIN应助小巧谷波采纳,获得30
9秒前
Michael完成签到,获得积分10
10秒前
xt完成签到,获得积分10
10秒前
zhanglin发布了新的文献求助10
11秒前
我是老大应助普通西瓜采纳,获得10
11秒前
ding应助张祖成采纳,获得10
13秒前
zhou完成签到,获得积分10
18秒前
烟花应助wuhao88采纳,获得10
19秒前
21秒前
沉静的时光完成签到 ,获得积分10
21秒前
22秒前
叶子的叶完成签到,获得积分10
22秒前
zhanglin完成签到,获得积分10
23秒前
xiaofeiyan发布了新的文献求助10
24秒前
852应助ronnie采纳,获得10
25秒前
依依发布了新的文献求助10
26秒前
26秒前
28秒前
方囧发布了新的文献求助10
28秒前
六初完成签到 ,获得积分10
32秒前
33秒前
33秒前
33秒前
搞怪莫茗应助DK采纳,获得10
34秒前
小马甲应助郭月采纳,获得10
34秒前
张祖成发布了新的文献求助10
35秒前
dd完成签到,获得积分10
36秒前
36秒前
ronnie发布了新的文献求助10
37秒前
37秒前
小确幸发布了新的文献求助10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956731
求助须知:如何正确求助?哪些是违规求助? 3502835
关于积分的说明 11110432
捐赠科研通 3233801
什么是DOI,文献DOI怎么找? 1787571
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172