Fully Transformer Network for Skin Lesion Analysis

计算机科学 卷积神经网络 变压器 人工智能 模式识别(心理学) 联营
作者
Xinzi He,Ee-Leng Tan,Hanwen Bi,Xuzhe Zhang,Shijie Zhao,Baiying Lei
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:: 102357-102357
标识
DOI:10.1016/j.media.2022.102357
摘要

• We propose an FTN which is fully relied on Transformer. • We leverage sliding window tokenization to construct hierarchical features. • Spatial Pyramid Transformer to increase efficiency. • Transformer Decoder is proposed to aggregate hierarchical features. Automatic skin lesion analysis in terms of skin lesion segmentation and disease classification is of great importance. However, these two tasks are challenging as skin lesion images of multi-ethnic population are collected using various scanners in multiple international medical institutes. To address them, most recent works adopt convolutional neural networks (CNNs) for skin lesion analysis. However, due to the intrinsic locality of the convolution operator, CNNs lack the ability to capture contextual information and long-range dependency. To improve the baseline performance established by CNNs, we propose a Fully Transformer Network (FTN) to learn long-range contextual information for skin lesion analysis. FTN is a hierarchical Transformer computing features using Spatial Pyramid Transformer (SPT). SPT has linear computational complexity as it introduces a spatial pyramid pooling (SPP) module into multi-head attention (MHA)to largely reduce the computation and memory usage. We conduct extensive skin lesion analysis experiments to verify the effectiveness and efficiency of FTN using ISIC 2018 dataset. Our experimental results show that FTN consistently outperforms other state-of-the-art CNNs in terms of computational efficiency and the number of tunable parameters due to our efficient SPT and hierarchical network structure. The code and models will be public available at: https://github.com/Novestars/Fully-Transformer-Network .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
xvxsdg完成签到,获得积分10
1秒前
你爸爸完成签到,获得积分10
1秒前
英姑应助研友_LJpvdZ采纳,获得30
1秒前
adfadf完成签到,获得积分20
1秒前
Yucorn完成签到 ,获得积分10
2秒前
元谷雪应助雷雷采纳,获得10
3秒前
失眠店员完成签到,获得积分10
3秒前
3秒前
yyyaooo完成签到,获得积分10
3秒前
4秒前
许大脚发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
香蕉觅云应助王欢欢采纳,获得10
8秒前
9秒前
Wink14551发布了新的文献求助10
10秒前
自然水杯发布了新的文献求助10
11秒前
研友_LJpvdZ发布了新的文献求助30
13秒前
14秒前
传奇3应助招风鼠采纳,获得10
15秒前
SciGPT应助烂漫的妙松采纳,获得10
15秒前
15秒前
16秒前
大帅完成签到,获得积分20
16秒前
杳鸢应助ThoseRangers0624采纳,获得10
16秒前
Orange应助肖肖采纳,获得10
17秒前
张小星发布了新的文献求助10
18秒前
机灵海之发布了新的文献求助10
18秒前
20秒前
清爽熊猫应助EthanYeung采纳,获得10
20秒前
大帅发布了新的文献求助10
20秒前
22秒前
JY完成签到 ,获得积分10
22秒前
25秒前
25秒前
25秒前
cat发布了新的文献求助30
25秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482184
求助须知:如何正确求助?哪些是违规求助? 3071994
关于积分的说明 9125318
捐赠科研通 2763778
什么是DOI,文献DOI怎么找? 1516692
邀请新用户注册赠送积分活动 701746
科研通“疑难数据库(出版商)”最低求助积分说明 700530