Remaining Useful Life Prediction of Lithium-Ion Battery via a Sequence Decomposition and Deep Learning Integrated Approach

希尔伯特-黄变换 电池(电) 人工神经网络 超参数 计算机科学 人工智能 深度学习 降级(电信) 机器学习 工程类 功率(物理) 计算机视觉 量子力学 电信 滤波器(信号处理) 物理
作者
Zhang Chen,Liqun Chen,Wenjing Shen,Kangkang Xu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:71 (2): 1466-1479 被引量:48
标识
DOI:10.1109/tvt.2021.3134312
摘要

The remaining useful life (RUL) prediction of Lithium-ion batteries (LIBs) is of great importance to the health management of electric vehicles and hybrid electric vehicles. However, fluctuation and nonlinearity occur during battery degradation, resulting in difficulties in both model adaptability and RUL prediction accuracy. To face the challenge, we propose a sequence decomposition and deep learning integrated prognostic approach for the RUL prediction of LIBs. Complementary ensemble empirical mode decomposition and principal component analysis are applied to separate the local fluctuations and the global degradation trend from the battery aging data. The long short-term memory neural network combined with fully connected layers is designed as a transfer learning model. The hyperparameter optimization and finetuning strategy of the model is developed based on offline training data. In addition, to further realize the reasonable and effective LIB second-life applications, the RUL corresponding to different failure thresholds is predicted. The performance of the proposed integrated approach in degradation modeling and RUL prediction is evaluated on three publicly available LIB datasets with different degradation characteristics, as well as compared with other prediction algorithms under the same conditions. The illustrative results demonstrate that the proposed approach can achieve accurate, adaptive, and robust prediction for both capacity trajectory and RUL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助林lin采纳,获得10
3秒前
热心易绿完成签到 ,获得积分10
3秒前
newton发布了新的文献求助10
4秒前
醒醒发布了新的文献求助10
5秒前
Kismet完成签到,获得积分10
6秒前
共享精神应助张皓123采纳,获得10
6秒前
6秒前
慕青应助yue123采纳,获得10
8秒前
Liyipu发布了新的文献求助10
9秒前
9秒前
菠萝菠萝哒应助西米采纳,获得20
9秒前
11秒前
15秒前
低头啃草牛完成签到,获得积分10
15秒前
壮观可仁发布了新的文献求助10
15秒前
打打应助糖豆豆采纳,获得10
17秒前
Yangqx007完成签到,获得积分10
17秒前
田様应助无妄采纳,获得10
17秒前
19秒前
20秒前
默默的乘风完成签到 ,获得积分10
20秒前
20秒前
小鲸鱼发布了新的文献求助10
20秒前
22秒前
hengyu应助西米采纳,获得20
22秒前
jery发布了新的文献求助10
23秒前
天天快乐应助Pawn采纳,获得30
24秒前
夜盏丿完成签到,获得积分10
25秒前
张皓123发布了新的文献求助10
26秒前
乐乐应助壮观可仁采纳,获得10
26秒前
28秒前
30秒前
天行马完成签到,获得积分10
31秒前
爱静静应助南门街口的猫采纳,获得10
31秒前
32秒前
研友_nEoMy8发布了新的文献求助10
32秒前
LXOYL完成签到,获得积分10
32秒前
糖果乖乖完成签到 ,获得积分10
33秒前
苗条大叔发布了新的文献求助10
34秒前
自由飞阳完成签到,获得积分10
35秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3380898
求助须知:如何正确求助?哪些是违规求助? 2995952
关于积分的说明 8766354
捐赠科研通 2681057
什么是DOI,文献DOI怎么找? 1468314
科研通“疑难数据库(出版商)”最低求助积分说明 678977
邀请新用户注册赠送积分活动 670978