Improving low-resource Tibetan end-to-end ASR by multilingual and multilevel unit modeling

计算机科学 语音识别 初始化 字错误率 隐马尔可夫模型 语言模型 资源(消歧) 电话 自然语言处理 人工智能 语言学 哲学 计算机网络 程序设计语言
作者
Siqing Qin,Longbiao Wang,Sheng Li,Jianwu Dang,Lixin Pan
出处
期刊:Eurasip Journal on Audio, Speech, and Music Processing [Springer Nature]
卷期号:2022 (1) 被引量:7
标识
DOI:10.1186/s13636-021-00233-4
摘要

Abstract Conventional automatic speech recognition (ASR) and emerging end-to-end (E2E) speech recognition have achieved promising results after being provided with sufficient resources. However, for low-resource language, the current ASR is still challenging. The Lhasa dialect is the most widespread Tibetan dialect and has a wealth of speakers and transcriptions. Hence, it is meaningful to apply the ASR technique to the Lhasa dialect for historical heritage protection and cultural exchange. Previous work on Tibetan speech recognition focused on selecting phone-level acoustic modeling units and incorporating tonal information but underestimated the influence of limited data. The purpose of this paper is to improve the speech recognition performance of the low-resource Lhasa dialect by adopting multilingual speech recognition technology on the E2E structure based on the transfer learning framework. Using transfer learning, we first establish a monolingual E2E ASR system for the Lhasa dialect with different source languages to initialize the ASR model to compare the positive effects of source languages on the Tibetan ASR model. We further propose a multilingual E2E ASR system by utilizing initialization strategies with different source languages and multilevel units, which is proposed for the first time. Our experiments show that the performance of the proposed method-based ASR system exceeds that of the E2E baseline ASR system. Our proposed method effectively models the low-resource Lhasa dialect and achieves a relative 14.2% performance improvement in character error rate (CER) compared to DNN-HMM systems. Moreover, from the best monolingual E2E model to the best multilingual E2E model of the Lhasa dialect, the system’s performance increased by 8.4% in CER.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨雪归青发布了新的文献求助10
刚刚
benny发布了新的文献求助10
刚刚
1秒前
酷波er应助lo采纳,获得30
1秒前
1秒前
1秒前
1秒前
小谢快睡觉完成签到,获得积分10
1秒前
wanci应助Chenst采纳,获得10
2秒前
风清扬应助研小咩采纳,获得30
2秒前
2秒前
2秒前
微笑语山发布了新的文献求助10
2秒前
长生完成签到,获得积分10
2秒前
2秒前
搜集达人应助努力搞钱采纳,获得10
4秒前
4秒前
ZMM关闭了ZMM文献求助
4秒前
娟儿完成签到,获得积分10
4秒前
NexusExplorer应助guzhfia采纳,获得10
5秒前
zoerist发布了新的文献求助10
5秒前
Volundio完成签到,获得积分10
5秒前
大模型应助夏夏采纳,获得10
6秒前
6秒前
春日二三发布了新的文献求助10
6秒前
6秒前
火龙果大王完成签到,获得积分20
7秒前
7秒前
Milder发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
陈荆洲完成签到,获得积分10
8秒前
8秒前
8秒前
无花果应助刺槐采纳,获得10
8秒前
8秒前
ally发布了新的文献求助10
8秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692514
求助须知:如何正确求助?哪些是违规求助? 5088556
关于积分的说明 15208452
捐赠科研通 4849737
什么是DOI,文献DOI怎么找? 2601255
邀请新用户注册赠送积分活动 1553028
关于科研通互助平台的介绍 1511271