Improving low-resource Tibetan end-to-end ASR by multilingual and multilevel unit modeling

计算机科学 语音识别 初始化 字错误率 隐马尔可夫模型 语言模型 资源(消歧) 电话 自然语言处理 人工智能 语言学 计算机网络 哲学 程序设计语言
作者
Siqing Qin,Longbiao Wang,Sheng Li,Jianwu Dang,Lixin Pan
出处
期刊:Eurasip Journal on Audio, Speech, and Music Processing [Springer Nature]
卷期号:2022 (1) 被引量:7
标识
DOI:10.1186/s13636-021-00233-4
摘要

Abstract Conventional automatic speech recognition (ASR) and emerging end-to-end (E2E) speech recognition have achieved promising results after being provided with sufficient resources. However, for low-resource language, the current ASR is still challenging. The Lhasa dialect is the most widespread Tibetan dialect and has a wealth of speakers and transcriptions. Hence, it is meaningful to apply the ASR technique to the Lhasa dialect for historical heritage protection and cultural exchange. Previous work on Tibetan speech recognition focused on selecting phone-level acoustic modeling units and incorporating tonal information but underestimated the influence of limited data. The purpose of this paper is to improve the speech recognition performance of the low-resource Lhasa dialect by adopting multilingual speech recognition technology on the E2E structure based on the transfer learning framework. Using transfer learning, we first establish a monolingual E2E ASR system for the Lhasa dialect with different source languages to initialize the ASR model to compare the positive effects of source languages on the Tibetan ASR model. We further propose a multilingual E2E ASR system by utilizing initialization strategies with different source languages and multilevel units, which is proposed for the first time. Our experiments show that the performance of the proposed method-based ASR system exceeds that of the E2E baseline ASR system. Our proposed method effectively models the low-resource Lhasa dialect and achieves a relative 14.2% performance improvement in character error rate (CER) compared to DNN-HMM systems. Moreover, from the best monolingual E2E model to the best multilingual E2E model of the Lhasa dialect, the system’s performance increased by 8.4% in CER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy发布了新的文献求助10
刚刚
1秒前
1秒前
小二郎应助Ode采纳,获得10
1秒前
细心荔枝完成签到,获得积分20
3秒前
希望天下0贩的0应助hl_sci采纳,获得10
4秒前
yuaasusanaann发布了新的文献求助10
4秒前
4秒前
峥2发布了新的文献求助10
5秒前
han完成签到,获得积分10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
7秒前
ED应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
yydragen应助科研通管家采纳,获得30
8秒前
SYLH应助科研通管家采纳,获得30
8秒前
科目三应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
SHAO应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
10秒前
orixero应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992193
求助须知:如何正确求助?哪些是违规求助? 3533192
关于积分的说明 11261459
捐赠科研通 3272613
什么是DOI,文献DOI怎么找? 1805855
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809442