Improving low-resource Tibetan end-to-end ASR by multilingual and multilevel unit modeling

计算机科学 语音识别 初始化 字错误率 隐马尔可夫模型 语言模型 资源(消歧) 电话 自然语言处理 人工智能 语言学 计算机网络 哲学 程序设计语言
作者
Siqing Qin,Longbiao Wang,Sheng Li,Jianwu Dang,Lixin Pan
出处
期刊:Eurasip Journal on Audio, Speech, and Music Processing [Springer Nature]
卷期号:2022 (1) 被引量:7
标识
DOI:10.1186/s13636-021-00233-4
摘要

Abstract Conventional automatic speech recognition (ASR) and emerging end-to-end (E2E) speech recognition have achieved promising results after being provided with sufficient resources. However, for low-resource language, the current ASR is still challenging. The Lhasa dialect is the most widespread Tibetan dialect and has a wealth of speakers and transcriptions. Hence, it is meaningful to apply the ASR technique to the Lhasa dialect for historical heritage protection and cultural exchange. Previous work on Tibetan speech recognition focused on selecting phone-level acoustic modeling units and incorporating tonal information but underestimated the influence of limited data. The purpose of this paper is to improve the speech recognition performance of the low-resource Lhasa dialect by adopting multilingual speech recognition technology on the E2E structure based on the transfer learning framework. Using transfer learning, we first establish a monolingual E2E ASR system for the Lhasa dialect with different source languages to initialize the ASR model to compare the positive effects of source languages on the Tibetan ASR model. We further propose a multilingual E2E ASR system by utilizing initialization strategies with different source languages and multilevel units, which is proposed for the first time. Our experiments show that the performance of the proposed method-based ASR system exceeds that of the E2E baseline ASR system. Our proposed method effectively models the low-resource Lhasa dialect and achieves a relative 14.2% performance improvement in character error rate (CER) compared to DNN-HMM systems. Moreover, from the best monolingual E2E model to the best multilingual E2E model of the Lhasa dialect, the system’s performance increased by 8.4% in CER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王灿灿发布了新的文献求助10
1秒前
矿渣完成签到,获得积分10
1秒前
psybrain9527完成签到,获得积分10
1秒前
Cherry完成签到,获得积分10
1秒前
小李熊猫完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
一叶知秋发布了新的文献求助10
4秒前
高贵火车完成签到,获得积分20
5秒前
5秒前
5秒前
Bingrrrr完成签到,获得积分10
5秒前
lf66完成签到,获得积分10
5秒前
6秒前
SciGPT应助wcy采纳,获得10
6秒前
xiangjingjing发布了新的文献求助10
6秒前
zzjiay完成签到,获得积分10
7秒前
9秒前
9秒前
wtf发布了新的文献求助10
9秒前
9秒前
dgygy完成签到,获得积分10
9秒前
10秒前
江铭发布了新的文献求助10
10秒前
李爱国应助Y123采纳,获得10
10秒前
12秒前
LongH2完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
hetao发布了新的文献求助10
16秒前
Lucas应助零渊采纳,获得10
16秒前
16秒前
求助完成签到,获得积分10
17秒前
王露阳完成签到,获得积分10
17秒前
wss发布了新的文献求助10
18秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655