Improving low-resource Tibetan end-to-end ASR by multilingual and multilevel unit modeling

计算机科学 语音识别 初始化 字错误率 隐马尔可夫模型 语言模型 资源(消歧) 电话 自然语言处理 人工智能 语言学 哲学 计算机网络 程序设计语言
作者
Siqing Qin,Longbiao Wang,Sheng Li,Jianwu Dang,Lixin Pan
出处
期刊:Eurasip Journal on Audio, Speech, and Music Processing [Springer Nature]
卷期号:2022 (1) 被引量:7
标识
DOI:10.1186/s13636-021-00233-4
摘要

Abstract Conventional automatic speech recognition (ASR) and emerging end-to-end (E2E) speech recognition have achieved promising results after being provided with sufficient resources. However, for low-resource language, the current ASR is still challenging. The Lhasa dialect is the most widespread Tibetan dialect and has a wealth of speakers and transcriptions. Hence, it is meaningful to apply the ASR technique to the Lhasa dialect for historical heritage protection and cultural exchange. Previous work on Tibetan speech recognition focused on selecting phone-level acoustic modeling units and incorporating tonal information but underestimated the influence of limited data. The purpose of this paper is to improve the speech recognition performance of the low-resource Lhasa dialect by adopting multilingual speech recognition technology on the E2E structure based on the transfer learning framework. Using transfer learning, we first establish a monolingual E2E ASR system for the Lhasa dialect with different source languages to initialize the ASR model to compare the positive effects of source languages on the Tibetan ASR model. We further propose a multilingual E2E ASR system by utilizing initialization strategies with different source languages and multilevel units, which is proposed for the first time. Our experiments show that the performance of the proposed method-based ASR system exceeds that of the E2E baseline ASR system. Our proposed method effectively models the low-resource Lhasa dialect and achieves a relative 14.2% performance improvement in character error rate (CER) compared to DNN-HMM systems. Moreover, from the best monolingual E2E model to the best multilingual E2E model of the Lhasa dialect, the system’s performance increased by 8.4% in CER.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Piky完成签到,获得积分20
1秒前
羊肉泡馍发布了新的文献求助10
1秒前
北极星应助kbkyvuy采纳,获得10
1秒前
多吃青菜完成签到,获得积分10
1秒前
1秒前
qiqi完成签到,获得积分10
2秒前
小艾发布了新的文献求助10
2秒前
3秒前
JeKing完成签到,获得积分10
3秒前
酷波er应助高贵的小熊猫采纳,获得10
3秒前
鳗鱼柚子完成签到 ,获得积分10
3秒前
ly完成签到 ,获得积分10
4秒前
无极微光应助Akjan采纳,获得20
4秒前
4秒前
瘦瘦怜阳发布了新的文献求助10
5秒前
溯777发布了新的文献求助10
5秒前
Piky发布了新的文献求助10
5秒前
Mercury完成签到,获得积分10
5秒前
5秒前
5秒前
李健应助果实采纳,获得10
6秒前
充电宝应助果实采纳,获得10
6秒前
隐形曼青应助果实采纳,获得10
6秒前
orixero应助果实采纳,获得10
6秒前
6秒前
6秒前
野性的半青完成签到,获得积分10
6秒前
LLLLLL完成签到,获得积分10
6秒前
季博常完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
季博常发布了新的文献求助10
8秒前
十二发布了新的文献求助10
9秒前
小斌子发布了新的文献求助10
9秒前
华仔应助Mercury采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545721
求助须知:如何正确求助?哪些是违规求助? 4631761
关于积分的说明 14622099
捐赠科研通 4573427
什么是DOI,文献DOI怎么找? 2507524
邀请新用户注册赠送积分活动 1484223
关于科研通互助平台的介绍 1455530