已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An enhanced cascade-based deep forest model for drug combination prediction

级联 人工智能 药品 计算机科学 医学 药理学 化学 色谱法
作者
Weiping Lin,Lianlian Wu,Yixin Zhang,Yuqi Wen,Bowei Yan,Chong Dai,Kunhong Liu,Song He,Xiaochen Bo
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:28
标识
DOI:10.1093/bib/bbab562
摘要

Abstract Combination therapy has shown an obvious curative effect on complex diseases, whereas the search space of drug combinations is too large to be validated experimentally even with high-throughput screens. With the increase of the number of drugs, artificial intelligence techniques, especially machine learning methods, have become applicable for the discovery of synergistic drug combinations to significantly reduce the experimental workload. In this study, in order to predict novel synergistic drug combinations in various cancer cell lines, the cell line-specific drug-induced gene expression profile (GP) is added as a new feature type to capture the cellular response of drugs and reveal the biological mechanism of synergistic effect. Then, an enhanced cascade-based deep forest regressor (EC-DFR) is innovatively presented to apply the new small-scale drug combination dataset involving chemical, physical and biological (GP) properties of drugs and cells. Verified by the dataset, EC-DFR outperforms two state-of-the-art deep neural network-based methods and several advanced classical machine learning algorithms. Biological experimental validation performed subsequently on a set of previously untested drug combinations further confirms the performance of EC-DFR. What is more prominent is that EC-DFR can distinguish the most important features, making it more interpretable. By evaluating the contribution of each feature type, GP feature contributes 82.40%, showing the cellular responses of drugs may play crucial roles in synergism prediction. The analysis based on the top contributing genes in GP further demonstrates some potential relationships between the transcriptomic levels of key genes under drug regulation and the synergism of drug combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木小易完成签到,获得积分10
刚刚
endocrine完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
星辰大海应助ceeray23采纳,获得20
2秒前
小超完成签到,获得积分10
3秒前
晴雨天完成签到 ,获得积分10
5秒前
niuma发布了新的文献求助10
5秒前
斯文败类应助lxy采纳,获得10
5秒前
endocrine发布了新的文献求助10
6秒前
优秀不愁发布了新的文献求助10
7秒前
11秒前
12秒前
英俊的铭应助ceeray23采纳,获得20
12秒前
茉莉完成签到 ,获得积分10
13秒前
酷波er应助clove采纳,获得10
14秒前
信哥哥发布了新的文献求助10
14秒前
14秒前
橙橙橙橙发布了新的文献求助10
15秒前
18秒前
18秒前
Owen应助暮然采纳,获得10
19秒前
20秒前
科研小白发布了新的文献求助10
20秒前
21秒前
王仙人发布了新的文献求助10
22秒前
liu发布了新的文献求助10
23秒前
23秒前
zhang完成签到,获得积分10
24秒前
无花果应助科研小白采纳,获得10
24秒前
红豆盖饭发布了新的文献求助10
27秒前
27秒前
SCI完成签到,获得积分10
27秒前
28秒前
28秒前
28秒前
李健的小迷弟应助xkx采纳,获得10
30秒前
暮然发布了新的文献求助10
31秒前
贝尔发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Atlas of the Rabbit Brain and Spinal Cord 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5018389
求助须知:如何正确求助?哪些是违规求助? 4257734
关于积分的说明 13269841
捐赠科研通 4062244
什么是DOI,文献DOI怎么找? 2221850
邀请新用户注册赠送积分活动 1231029
关于科研通互助平台的介绍 1153784