An enhanced cascade-based deep forest model for drug combination prediction

级联 人工智能 药品 计算机科学 医学 药理学 化学 色谱法
作者
Weiping Lin,Lianlian Wu,Yixin Zhang,Yuqi Wen,Bowei Yan,Chong Dai,Kunhong Liu,Song He,Xiaochen Bo
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:28
标识
DOI:10.1093/bib/bbab562
摘要

Abstract Combination therapy has shown an obvious curative effect on complex diseases, whereas the search space of drug combinations is too large to be validated experimentally even with high-throughput screens. With the increase of the number of drugs, artificial intelligence techniques, especially machine learning methods, have become applicable for the discovery of synergistic drug combinations to significantly reduce the experimental workload. In this study, in order to predict novel synergistic drug combinations in various cancer cell lines, the cell line-specific drug-induced gene expression profile (GP) is added as a new feature type to capture the cellular response of drugs and reveal the biological mechanism of synergistic effect. Then, an enhanced cascade-based deep forest regressor (EC-DFR) is innovatively presented to apply the new small-scale drug combination dataset involving chemical, physical and biological (GP) properties of drugs and cells. Verified by the dataset, EC-DFR outperforms two state-of-the-art deep neural network-based methods and several advanced classical machine learning algorithms. Biological experimental validation performed subsequently on a set of previously untested drug combinations further confirms the performance of EC-DFR. What is more prominent is that EC-DFR can distinguish the most important features, making it more interpretable. By evaluating the contribution of each feature type, GP feature contributes 82.40%, showing the cellular responses of drugs may play crucial roles in synergism prediction. The analysis based on the top contributing genes in GP further demonstrates some potential relationships between the transcriptomic levels of key genes under drug regulation and the synergism of drug combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tt完成签到 ,获得积分10
1秒前
2秒前
coco完成签到,获得积分10
2秒前
打地鼠工人完成签到,获得积分10
2秒前
4秒前
张教授完成签到 ,获得积分10
5秒前
aiw完成签到,获得积分10
7秒前
dy完成签到,获得积分10
12秒前
自由宛筠完成签到 ,获得积分10
13秒前
sailingluwl完成签到,获得积分10
15秒前
18秒前
鸽子汤完成签到 ,获得积分10
18秒前
怕孤单的听寒完成签到,获得积分10
19秒前
凉薄少年应助chen采纳,获得40
19秒前
TTTHANKS完成签到 ,获得积分10
22秒前
cici完成签到 ,获得积分10
25秒前
辣小扬完成签到 ,获得积分10
39秒前
chen完成签到 ,获得积分20
40秒前
小杨完成签到,获得积分20
44秒前
花开富贵完成签到,获得积分10
45秒前
光亮静槐完成签到 ,获得积分10
46秒前
lzx应助chen采纳,获得50
47秒前
支雨泽完成签到,获得积分10
48秒前
111完成签到,获得积分10
50秒前
nature完成签到,获得积分10
51秒前
ning_qing完成签到 ,获得积分10
55秒前
一拳一个小欧阳完成签到 ,获得积分10
58秒前
wwwwwnnnnn完成签到 ,获得积分10
59秒前
结实的老虎完成签到,获得积分10
1分钟前
独行者完成签到,获得积分10
1分钟前
角鸮完成签到,获得积分10
1分钟前
小公牛完成签到 ,获得积分10
1分钟前
1分钟前
欣于所遇完成签到,获得积分10
1分钟前
研友完成签到 ,获得积分10
1分钟前
暖暖的禾日完成签到,获得积分10
1分钟前
复杂的方盒完成签到 ,获得积分10
1分钟前
悠然完成签到,获得积分10
1分钟前
花海完成签到,获得积分10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965780
求助须知:如何正确求助?哪些是违规求助? 3511022
关于积分的说明 11156025
捐赠科研通 3245496
什么是DOI,文献DOI怎么找? 1793089
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804255