An Explainable Machine Learning Approach Reveals Prognostic Significance of Right Ventricular Dysfunction in Nonischemic Cardiomyopathy

医学 队列 危险分层 内科学 心脏磁共振 临床终点 心脏病学 磁共振成像 心肌病 心力衰竭 放射科 临床试验
作者
Ahmed S. Fahmy,Ibolya Csécs,Arghavan Arafati,Salah Assana,Tuyen Yankama,Talal Khalid Al-Otaibi,Jennifer Rodriguez,Yiyun Chen,Long Ngo,Warren J. Manning,Raymond Y. Kwong,Reza Nezafat
出处
期刊:Jacc-cardiovascular Imaging [Elsevier]
卷期号:15 (5): 766-779 被引量:28
标识
DOI:10.1016/j.jcmg.2021.11.029
摘要

The authors implemented an explainable machine learning (ML) model to gain insight into the association between cardiac magnetic resonance markers and adverse outcomes of cardiovascular hospitalization and all-cause death (composite endpoint) in patients with nonischemic dilated cardiomyopathy (NICM).Risk stratification of patients with NICM remains challenging. An explainable ML model has the potential to provide insight into the contributions of different risk markers in the prediction model.An explainable ML model based on extreme gradient boosting (XGBoost) machines was developed using cardiac magnetic resonance and clinical parameters. The study cohorts consist of patients with NICM from 2 academic medical centers: Beth Israel Deaconess Medical Center (BIDMC) and Brigham and Women's Hospital (BWH), with 328 and 214 patients, respectively. XGBoost was trained on 70% of patients from the BIDMC cohort and evaluated based on the other 30% as internal validation. The model was externally validated using the BWH cohort. To investigate the contribution of different features in our risk prediction model, we used Shapley additive explanations (SHAP) analysis.During a mean follow-up duration of 40 months, 34 patients from BIDMC and 33 patients from BWH experienced the composite endpoint. The area under the curve for predicting the composite endpoint was 0.71 for the internal BIDMC validation and 0.69 for the BWH cohort. SHAP analysis identified parameters associated with right ventricular (RV) dysfunction and remodeling as primary markers of adverse outcomes. High risk thresholds were identified by SHAP analysis and thus provided thresholds for top predictive continuous clinical variables.An explainable ML-based risk prediction model has the potential to identify patients with NICM at risk for cardiovascular hospitalization and all-cause death. RV ejection fraction, end-systolic and end-diastolic volumes (as indicators of RV dysfunction and remodeling) were determined to be major risk markers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦沛柔发布了新的文献求助10
2秒前
叉烧发布了新的文献求助10
2秒前
3秒前
绿端完成签到,获得积分10
3秒前
凪凪发布了新的文献求助10
3秒前
3秒前
5秒前
阿智完成签到 ,获得积分10
5秒前
5秒前
5秒前
小二郎应助发文章采纳,获得10
5秒前
酷波er应助Halo采纳,获得10
6秒前
123456789hyb发布了新的文献求助10
8秒前
凪凪完成签到,获得积分10
8秒前
Veronica Mew完成签到,获得积分10
8秒前
9秒前
绿端发布了新的文献求助10
9秒前
MHX发布了新的文献求助10
9秒前
Lucas应助曼曼采纳,获得10
9秒前
9秒前
bluebell完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
彦卿完成签到,获得积分20
12秒前
zhBian完成签到 ,获得积分10
12秒前
12秒前
怕黑的凛发布了新的文献求助10
13秒前
13秒前
Gates发布了新的文献求助10
13秒前
14秒前
14秒前
小龙虾应助123456789hyb采纳,获得10
15秒前
16秒前
16秒前
科研通AI5应助厉害的哄哄采纳,获得10
16秒前
晓沫发布了新的文献求助10
17秒前
cortex发布了新的文献求助10
17秒前
852应助peipei采纳,获得10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553880
求助须知:如何正确求助?哪些是违规求助? 3129652
关于积分的说明 9383794
捐赠科研通 2828818
什么是DOI,文献DOI怎么找? 1555222
邀请新用户注册赠送积分活动 725923
科研通“疑难数据库(出版商)”最低求助积分说明 715331