材料科学
石墨烯
锂(药物)
化学工程
电极
化学气相沉积
纳米孔
扩散
氧气
离子
纳米技术
化学
医学
热力学
物理
工程类
内分泌学
物理化学
有机化学
作者
Lin Yan,Lingshuo Zong,Zhijia Zhang,Jianxin Li,Hongzhao Wu,Zhenyu Cui,Jianli Kang
出处
期刊:Carbon
[Elsevier]
日期:2022-04-01
卷期号:190: 402-411
被引量:14
标识
DOI:10.1016/j.carbon.2022.01.035
摘要
Engineering oxygen vacancies (Ovs) in submicron transition metal oxides (TMOs) is a promising way to fabricate high-capacity anodes for lithium-ion batteries (LIBs). Herein, oxygen vacancies activated porous MnO/graphene submicron needle arrays (Ovs-MnO/G NAs) are directly grown on flexible nanoporous Cu–Mn substrate by chemical vapour deposition and hydrogen etching method, and their lithium-ion diffusion and storage mechanisms and morphology evolution are systematically investigated at submicron scale. It can be concluded that these modification strategies synergistically guarantee the fast charge transfer, effective lithium-ion diffusion and storage behaviour, and electrode structural stability. Thus, the optimal Ovs-MnO/G NAs electrode deliver a high reversible capacity of 7.7 mAh cm−2 after 100 cycles at 0.2 mA cm−2 and outstanding cycling performance of 6.12 mAh cm−2 after 500 cycles at 1.0 mA cm−2. Furthermore, the Ovs-MnO/G NAs//NCM 523 full cells also achieve high average capacities of 6.74 mAh cm−2 and cycling stability of 3.88 mAh cm−2 after 100 cycles at 0.2C, indicating its practical application value.
科研通智能强力驱动
Strongly Powered by AbleSci AI