Multi-layer perceptron for detection of different class antibiotics from visual fluorescence response of a carbon nanoparticle-based multichannel array sensor

人工智能 计算机科学 荧光 碳纳米颗粒 班级(哲学) 感知器 图层(电子) 纳米颗粒 碳纤维 模式识别(心理学) 人工神经网络 纳米技术 材料科学 光学 算法 物理 复合数
作者
Saptarshi Mandal,Dipanjyoti Paul,Sriparna Saha,Prolay Das
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:360: 131660-131660 被引量:18
标识
DOI:10.1016/j.snb.2022.131660
摘要

Lack of automated accurate decision-making along with an on-site detection system impedes the identification of substances of environmental concern. In pursuit of making this feasible, we interconnected our optical fluorescence array sensing strategy with the predictive analytics of artificial intelligence. Herein, we developed a Carbon Nanoparticle-based nine-channel fluorescence array sensing method for the detection of six antibiotics of different classes that are precariously dumped in the environment from various industrial and animal husbandry sources. The fluorescence responses of the arrays in the presence or absence of six antibiotics were captured digitally and these were utilized as feature values for the identification of classes using machine learning and deep learning algorithms. Among the seven tested multi-class classification algorithms, Multi-layer Perceptron (MLP) with Generative Adversarial Nets stimulated augmented data set (Aug-MLP) outdid the others in recognizing the antibiotics. Most importantly, the performance of Aug-MLP is comparable to fluorescence spectroscopic discrimination that outclasses human visual judgment. The whole methodology was found to adapt well in real samples like extracts of poultry feeds. In a nutshell, a nanotechnology-deep learning interfaced semi-automated on-site multi-class antibiotic detection strategy has been developed that could be extended for inexpensive and expedited detection of other chemical entities. • Generative Adversarial Nets (GANs) have been used for the first time in visual fluorescence-based sensing. • Carbon nanoparticle-based visual fluorescence array sensor assimilated to predictive analytics of artificial intelligence. • Seven multi-class supervised algorithms employed to recognise various antibiotics through CMYK extraction of digital images. • Generative Adversarial Nets (GANs) aided Multi-Layer Perceptron (MLP) surpassed visual judgement to detect antibiotics. • Nanotechnology-deep learning interfaced semi-automated, inexpensive, point-of-care, antibiotic detection strategy developed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由的远侵完成签到 ,获得积分10
刚刚
巧克力手印完成签到,获得积分10
1秒前
屈岂愈发布了新的文献求助10
1秒前
2秒前
大橙子发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
jenny完成签到,获得积分10
5秒前
祁乐安完成签到,获得积分10
6秒前
naiyouqiu1989完成签到,获得积分10
7秒前
zjhzslq发布了新的文献求助10
8秒前
baoxiaozhai完成签到 ,获得积分10
9秒前
fy完成签到,获得积分10
10秒前
强公子完成签到,获得积分10
11秒前
17秒前
song完成签到 ,获得积分10
18秒前
怡然小蚂蚁完成签到 ,获得积分10
18秒前
小橙子完成签到,获得积分10
20秒前
SciGPT应助滴答采纳,获得10
20秒前
大气白翠完成签到,获得积分10
21秒前
确幸完成签到,获得积分10
21秒前
zjhzslq完成签到,获得积分10
21秒前
xdc发布了新的文献求助10
22秒前
ommphey完成签到 ,获得积分10
22秒前
牛哥还是强啊完成签到 ,获得积分10
23秒前
科研通AI2S应助屈岂愈采纳,获得10
24秒前
好名字完成签到,获得积分10
25秒前
kongzhiqiqi完成签到,获得积分10
26秒前
滴答完成签到 ,获得积分10
26秒前
浅浅殇完成签到,获得积分10
30秒前
31秒前
33秒前
滴答发布了新的文献求助10
36秒前
高高的天亦完成签到 ,获得积分10
37秒前
星空完成签到 ,获得积分10
38秒前
文艺的青旋完成签到 ,获得积分10
38秒前
青黛完成签到 ,获得积分10
45秒前
大橙子发布了新的文献求助10
49秒前
领导范儿应助科研通管家采纳,获得10
50秒前
量子星尘发布了新的文献求助10
54秒前
明钟达完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022