Multi-layer perceptron for detection of different class antibiotics from visual fluorescence response of a carbon nanoparticle-based multichannel array sensor

人工智能 计算机科学 荧光 碳纳米颗粒 班级(哲学) 感知器 图层(电子) 纳米颗粒 碳纤维 模式识别(心理学) 人工神经网络 纳米技术 材料科学 光学 算法 物理 复合数
作者
Saptarshi Mandal,Dipanjyoti Paul,Sriparna Saha,Prolay Das
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:360: 131660-131660 被引量:16
标识
DOI:10.1016/j.snb.2022.131660
摘要

Lack of automated accurate decision-making along with an on-site detection system impedes the identification of substances of environmental concern. In pursuit of making this feasible, we interconnected our optical fluorescence array sensing strategy with the predictive analytics of artificial intelligence. Herein, we developed a Carbon Nanoparticle-based nine-channel fluorescence array sensing method for the detection of six antibiotics of different classes that are precariously dumped in the environment from various industrial and animal husbandry sources. The fluorescence responses of the arrays in the presence or absence of six antibiotics were captured digitally and these were utilized as feature values for the identification of classes using machine learning and deep learning algorithms. Among the seven tested multi-class classification algorithms, Multi-layer Perceptron (MLP) with Generative Adversarial Nets stimulated augmented data set (Aug-MLP) outdid the others in recognizing the antibiotics. Most importantly, the performance of Aug-MLP is comparable to fluorescence spectroscopic discrimination that outclasses human visual judgment. The whole methodology was found to adapt well in real samples like extracts of poultry feeds. In a nutshell, a nanotechnology-deep learning interfaced semi-automated on-site multi-class antibiotic detection strategy has been developed that could be extended for inexpensive and expedited detection of other chemical entities. • Generative Adversarial Nets (GANs) have been used for the first time in visual fluorescence-based sensing. • Carbon nanoparticle-based visual fluorescence array sensor assimilated to predictive analytics of artificial intelligence. • Seven multi-class supervised algorithms employed to recognise various antibiotics through CMYK extraction of digital images. • Generative Adversarial Nets (GANs) aided Multi-Layer Perceptron (MLP) surpassed visual judgement to detect antibiotics. • Nanotechnology-deep learning interfaced semi-automated, inexpensive, point-of-care, antibiotic detection strategy developed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠的浩然完成签到,获得积分20
1秒前
那些年发布了新的文献求助10
1秒前
露露完成签到,获得积分10
1秒前
xixi发布了新的文献求助10
2秒前
2秒前
2秒前
科研凯凯完成签到,获得积分10
2秒前
3秒前
3秒前
Jon发布了新的文献求助10
3秒前
狂野乌冬面完成签到 ,获得积分10
4秒前
4秒前
kingwill应助迪迦奥特曼采纳,获得20
4秒前
4秒前
kukuluo完成签到,获得积分10
4秒前
独特的凝云完成签到 ,获得积分10
4秒前
Lei发布了新的文献求助10
5秒前
chuhaixunjing完成签到,获得积分10
5秒前
桐桐应助nightmare采纳,获得10
6秒前
自然的真完成签到,获得积分10
6秒前
HMR完成签到 ,获得积分10
6秒前
add完成签到,获得积分20
7秒前
Nansen完成签到,获得积分10
7秒前
十三完成签到,获得积分10
7秒前
英俊的铭应助NIUBEN采纳,获得10
7秒前
科目三应助稀饭采纳,获得10
8秒前
you发布了新的文献求助10
9秒前
谦让语兰完成签到,获得积分10
9秒前
maomaoElaine完成签到,获得积分10
9秒前
nani026完成签到,获得积分10
10秒前
Bazinga完成签到,获得积分10
11秒前
决然发布了新的文献求助30
11秒前
wang应助三伏天采纳,获得10
12秒前
12秒前
研友_VZG7GZ应助糊涂的小伙采纳,获得10
13秒前
huangllza完成签到,获得积分10
13秒前
充电宝应助嗑瓜子传奇采纳,获得10
14秒前
yuefeng完成签到,获得积分10
14秒前
Cassie完成签到,获得积分20
14秒前
猪猪hero发布了新的文献求助10
14秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441097
求助须知:如何正确求助?哪些是违规求助? 3037459
关于积分的说明 8969152
捐赠科研通 2726008
什么是DOI,文献DOI怎么找? 1495147
科研通“疑难数据库(出版商)”最低求助积分说明 691137
邀请新用户注册赠送积分活动 687922