Multi-layer perceptron for detection of different class antibiotics from visual fluorescence response of a carbon nanoparticle-based multichannel array sensor

人工智能 计算机科学 荧光 碳纳米颗粒 班级(哲学) 感知器 图层(电子) 纳米颗粒 碳纤维 模式识别(心理学) 人工神经网络 纳米技术 材料科学 光学 算法 物理 复合数
作者
Saptarshi Mandal,Dipanjyoti Paul,Sriparna Saha,Prolay Das
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:360: 131660-131660 被引量:23
标识
DOI:10.1016/j.snb.2022.131660
摘要

Lack of automated accurate decision-making along with an on-site detection system impedes the identification of substances of environmental concern. In pursuit of making this feasible, we interconnected our optical fluorescence array sensing strategy with the predictive analytics of artificial intelligence. Herein, we developed a Carbon Nanoparticle-based nine-channel fluorescence array sensing method for the detection of six antibiotics of different classes that are precariously dumped in the environment from various industrial and animal husbandry sources. The fluorescence responses of the arrays in the presence or absence of six antibiotics were captured digitally and these were utilized as feature values for the identification of classes using machine learning and deep learning algorithms. Among the seven tested multi-class classification algorithms, Multi-layer Perceptron (MLP) with Generative Adversarial Nets stimulated augmented data set (Aug-MLP) outdid the others in recognizing the antibiotics. Most importantly, the performance of Aug-MLP is comparable to fluorescence spectroscopic discrimination that outclasses human visual judgment. The whole methodology was found to adapt well in real samples like extracts of poultry feeds. In a nutshell, a nanotechnology-deep learning interfaced semi-automated on-site multi-class antibiotic detection strategy has been developed that could be extended for inexpensive and expedited detection of other chemical entities. • Generative Adversarial Nets (GANs) have been used for the first time in visual fluorescence-based sensing. • Carbon nanoparticle-based visual fluorescence array sensor assimilated to predictive analytics of artificial intelligence. • Seven multi-class supervised algorithms employed to recognise various antibiotics through CMYK extraction of digital images. • Generative Adversarial Nets (GANs) aided Multi-Layer Perceptron (MLP) surpassed visual judgement to detect antibiotics. • Nanotechnology-deep learning interfaced semi-automated, inexpensive, point-of-care, antibiotic detection strategy developed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tuyfytjt发布了新的文献求助10
2秒前
wangzheng发布了新的文献求助10
2秒前
当当发布了新的文献求助10
2秒前
火火发布了新的文献求助30
3秒前
冷艳薯片发布了新的文献求助20
3秒前
马里奥发布了新的文献求助10
6秒前
科科完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
9秒前
阿宁宁完成签到 ,获得积分10
12秒前
聪慧小霜应助火火采纳,获得10
12秒前
当当完成签到,获得积分20
13秒前
咄咄完成签到 ,获得积分10
13秒前
zhang26xian完成签到,获得积分10
13秒前
14秒前
16秒前
NIUB完成签到,获得积分10
18秒前
18秒前
19秒前
高山七石发布了新的文献求助10
19秒前
郑蒸日上发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
Sofia完成签到 ,获得积分0
21秒前
冷艳薯片发布了新的文献求助20
22秒前
22秒前
火火完成签到,获得积分10
24秒前
24秒前
24秒前
24秒前
thanhmanhp完成签到,获得积分10
25秒前
高山七石完成签到,获得积分10
26秒前
丘比特应助寒冷怜南采纳,获得10
27秒前
悄悄完成签到,获得积分10
27秒前
射鵰不慎闪腰完成签到,获得积分10
28秒前
彭于晏应助wangzheng采纳,获得10
28秒前
ZZY发布了新的文献求助10
28秒前
kingwill应助VAPORX采纳,获得20
30秒前
安宁完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585938
求助须知:如何正确求助?哪些是违规求助? 4002681
关于积分的说明 12390812
捐赠科研通 3678747
什么是DOI,文献DOI怎么找? 2027592
邀请新用户注册赠送积分活动 1061082
科研通“疑难数据库(出版商)”最低求助积分说明 947447