阈值
残余物
收缩率
计算机科学
激活函数
卷积神经网络
人工智能
干扰(通信)
断层(地质)
噪音(视频)
转化(遗传学)
非线性系统
人工神经网络
算法
领域(数学)
一致性(知识库)
数学
机器学习
图像(数学)
电信
地质学
频道(广播)
物理
地震学
基因
化学
量子力学
纯数学
生物化学
作者
Zhijin Zhang,Lei Chen,Chunlei Zhang,Huaitao Shi,He Li
出处
期刊:Measurement
[Elsevier]
日期:2022-06-01
卷期号:196: 111203-111203
被引量:21
标识
DOI:10.1016/j.measurement.2022.111203
摘要
The large environmental noise interference has a negative impact on the fault diagnosis of vibration signals. To solve the problems, we present novel global multi-attention deep residual shrinkage networks (GMA-DRSNs), by using attention mechanism. In this paper, the self-adaptive Leaky Thresholding shrinkage function is firstly proposed to substitute the original soft thresholding function in the deep residual shrinkage networks (DRSNs), where all the inner parameters of the approach are automatically inferred based on the attention sub-networks. Secondly, a novel activation function is further presented based on the above improvement, in order to realize the corresponding adaptive nonlinear transformation of each signal. Various experimental results show that our work can achieve better performance compared with the previous works. Finally, we systematically analyze the threshold’s tendency, and surprisingly find the same consistency with the receptive field of convolutional neural networks, which is the first geometry explanation work about DRSNs’ structure.
科研通智能强力驱动
Strongly Powered by AbleSci AI