A study to understand the role of ethylene glycol in the oxidative acid dissolution of chalcopyrite

黄铜矿 浸出(土壤学) 化学 硫酸 溶解 乙二醇 过氧化氢 无机化学 分解 斑铜矿 激进的 核化学 有机化学 地质学 土壤科学 土壤水分
作者
Ángel Ruíz Sánchez,G.T. Lapidus
出处
期刊:Minerals Engineering [Elsevier]
卷期号:180: 107502-107502 被引量:9
标识
DOI:10.1016/j.mineng.2022.107502
摘要

Recent investigations suggest that ethylene glycol (EG) performs two important functions in the oxidative dissolution of chalcopyrite with hydrogen peroxide: it prevents H2O2 dismutation on the chalcopyrite surface and, secondly, it hinders H2O2 decomposition due to the presence of dissolved copper and iron in the leach liquor. Of these two, retarding the H2O2 breakdown probably contributes most to the observed improvement in copper leaching; however, the nature of the role that EG plays in the solution is unclear. For that reason, a systematic study was undertaken, at different concentrations of sulfuric acid and EG, to reveal the role of EG in the leaching process. The results of this investigation show that EG hinders H2O2 degradation by decreasing the copper and iron activities in the solution through Cu (II)-EG and Fe (II, III)-EG complex formation. Likewise, the slowing effect strongly depends on the H2SO4 concentration because the Fenton reaction, which is responsible for the decomposition, increases its efficiency with lower acid concentrations (<0.1 M). Thus, successful leaching could be attained with concentrations above 0.7 M and 0.1 M of sulfuric acid and EG, respectively; otherwise, rapid H2O2 degradation and simultaneous EG mineralization (complete oxidation, in other words, oxidation to CO2 and H2O) are favored as a consequence of the reactions between H2O2 and the leached metals and the OH* radicals produced in the leach liquor, respectively. In view of these results, a brief discussion is presented on the implications of chalcopyrite leaching with H2O2, showing alternatives to increase its performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mofan发布了新的文献求助10
3秒前
时尚的电脑完成签到 ,获得积分10
3秒前
rebeccahu举报朴实的思烟求助涉嫌违规
3秒前
脑洞疼应助拉磨的狗采纳,获得10
4秒前
4秒前
4秒前
彳亍1117应助XLXY采纳,获得10
5秒前
5秒前
C_Cppp发布了新的文献求助10
6秒前
嘉叶完成签到,获得积分10
8秒前
Shirley完成签到,获得积分20
8秒前
ALESUO发布了新的文献求助10
9秒前
bible完成签到,获得积分10
10秒前
Xiaoyuan发布了新的文献求助30
10秒前
活力怜翠完成签到,获得积分10
10秒前
11秒前
11秒前
Shirley发布了新的文献求助10
12秒前
金色天际线完成签到,获得积分10
12秒前
优雅的薯片完成签到,获得积分10
13秒前
13秒前
13秒前
皮卡丘完成签到 ,获得积分10
14秒前
14秒前
543543发布了新的文献求助10
15秒前
桐桐应助xiaomu采纳,获得30
18秒前
jia发布了新的文献求助10
18秒前
19秒前
共享精神应助谷雨秋采纳,获得20
19秒前
所所应助yyydd采纳,获得10
20秒前
拉磨的狗发布了新的文献求助10
20秒前
别卡秃噜皮完成签到,获得积分10
22秒前
xx完成签到 ,获得积分10
22秒前
22秒前
22秒前
orixero应助刻苦冰颜采纳,获得10
23秒前
hygge完成签到,获得积分10
23秒前
刘唐荣发布了新的文献求助10
25秒前
26秒前
----发布了新的文献求助30
26秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489201
求助须知:如何正确求助?哪些是违规求助? 3076528
关于积分的说明 9145590
捐赠科研通 2768799
什么是DOI,文献DOI怎么找? 1519439
邀请新用户注册赠送积分活动 703814
科研通“疑难数据库(出版商)”最低求助积分说明 702024