清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

From Machine Learning to Robotics: Challenges and Opportunities for Embodied Intelligence

具身认知 人工智能 软件部署 计算机科学 机器人学 认知机器人学 适应(眼睛) 领域(数学分析) 领域(数学) 集合(抽象数据类型) 机器人 人机交互 机器学习 心理学 软件工程 数学分析 数学 神经科学 纯数学 程序设计语言
作者
Nicholas Roy,Ingmar Posner,Tim Barfoot,Philippe Beaudoin,Yoshua Bengio,Jeannette Bohg,Oliver Brock,Isabelle Depatie,Dieter Fox,Dan Koditschek,Tomás Lozano‐Pérez,Vikash K. Mansinghka,Christopher Pal,Blake A. Richards,Dorsa Sadigh,Stefan Schaal,Gaurav S. Sukhatme,Denis Thérien,Marc Toussaint,Michiel van de Panne
出处
期刊:Cornell University - arXiv 被引量:10
标识
DOI:10.48550/arxiv.2110.15245
摘要

Machine learning has long since become a keystone technology, accelerating science and applications in a broad range of domains. Consequently, the notion of applying learning methods to a particular problem set has become an established and valuable modus operandi to advance a particular field. In this article we argue that such an approach does not straightforwardly extended to robotics -- or to embodied intelligence more generally: systems which engage in a purposeful exchange of energy and information with a physical environment. In particular, the purview of embodied intelligent agents extends significantly beyond the typical considerations of main-stream machine learning approaches, which typically (i) do not consider operation under conditions significantly different from those encountered during training; (ii) do not consider the often substantial, long-lasting and potentially safety-critical nature of interactions during learning and deployment; (iii) do not require ready adaptation to novel tasks while at the same time (iv) effectively and efficiently curating and extending their models of the world through targeted and deliberate actions. In reality, therefore, these limitations result in learning-based systems which suffer from many of the same operational shortcomings as more traditional, engineering-based approaches when deployed on a robot outside a well defined, and often narrow operating envelope. Contrary to viewing embodied intelligence as another application domain for machine learning, here we argue that it is in fact a key driver for the advancement of machine learning technology. In this article our goal is to highlight challenges and opportunities that are specific to embodied intelligence and to propose research directions which may significantly advance the state-of-the-art in robot learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linuo完成签到,获得积分10
34秒前
毓雅完成签到,获得积分10
46秒前
Air完成签到 ,获得积分10
1分钟前
李歪歪完成签到 ,获得积分10
1分钟前
muriel完成签到,获得积分10
1分钟前
通科研完成签到 ,获得积分10
2分钟前
幻梦如歌完成签到,获得积分10
2分钟前
幻梦如歌发布了新的文献求助10
3分钟前
3分钟前
呆呆的猕猴桃完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
大熊发布了新的文献求助10
5分钟前
胖小羊完成签到 ,获得积分10
5分钟前
大熊完成签到 ,获得积分10
5分钟前
5分钟前
斯寜应助神勇朝雪采纳,获得10
5分钟前
XQQDD完成签到,获得积分10
6分钟前
ike驳回了orixero应助
6分钟前
神勇朝雪完成签到,获得积分10
6分钟前
6分钟前
烟花应助学不动了采纳,获得10
6分钟前
6分钟前
ike发布了新的文献求助200
6分钟前
7分钟前
Orange应助科研通管家采纳,获得10
7分钟前
小木虫完成签到,获得积分10
7分钟前
7分钟前
小木虫发布了新的文献求助10
8分钟前
9分钟前
nanan发布了新的文献求助10
9分钟前
nanan完成签到,获得积分10
9分钟前
9分钟前
twk完成签到,获得积分10
9分钟前
英姑应助科研通管家采纳,获得20
9分钟前
twk发布了新的文献求助30
9分钟前
科研通AI5应助twk采纳,获得10
10分钟前
方白秋完成签到,获得积分10
10分钟前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
11分钟前
流氓恐龙完成签到,获得积分10
11分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749970
求助须知:如何正确求助?哪些是违规求助? 3293224
关于积分的说明 10080128
捐赠科研通 3008612
什么是DOI,文献DOI怎么找? 1652302
邀请新用户注册赠送积分活动 787340
科研通“疑难数据库(出版商)”最低求助积分说明 752096