太赫兹辐射
材料科学
光学
光电子学
宽带
吸收(声学)
超材料吸收剂
调制(音乐)
极化(电化学)
超材料
物理
可调谐超材料
声学
物理化学
化学
作者
Zexuan Zhang,Qun Xie,Linhui Guo,Chenxi Su,Mei Wang,Fengnian Xia,Jianfeng Sun,Kai Li,He Feng,Maojin Yun
出处
期刊:Optics Express
[The Optical Society]
日期:2022-07-20
卷期号:30 (17): 30832-30832
被引量:20
摘要
This paper proposes a vanadium dioxide metamaterial-based tunable, polarization-independent coherent perfect absorber (CPA) in the terahertz frequency range. The designed CPA demonstrates intelligent reconfigurable switch modulation from an ultra-broadband absorber mode to a dual-band absorber mode via the thermally controlled of VO 2 . The mode of ultra-broadband absorber is realized when the conductivity of VO 2 reaches 11850 S/m via controlling its temperature around T = 328 K. In this mode, the CPA demonstrates more than 90% absorption efficiency within the ultra-wide frequency band that extends from 0.1 THz to 10.8 THz. As the conductivity of VO 2 reaches 2×10 5 S/m (T = 340 K), the CPA switches to a dual-band absorber mode where a relatively high absorption efficiency of 98% and 99.7% is detected at frequencies of 4.5 THz and 9.8 THz, respectively. Additionally, using phase modulation of the incident light, the proposed CPA can regulate the absorption efficiency, which can be intelligently controlled from perfect absorption to high pass-through transmission. Owing to the ability of the proposed CPA to intelligently control the performance of light, this study can contribute towards enhancing the performance of stealth devices, all-optical switches and coherent photodetectors.
科研通智能强力驱动
Strongly Powered by AbleSci AI