Learning Multi-granularity Consecutive User Intent Unit for Session-based Recommendation

会话(web分析) 粒度 计算机科学 单位(环理论) 情报检索 多媒体 万维网 操作系统 心理学 数学教育
作者
Jiayan Guo,Yaming Yang,Xiangchen Song,Yuan Zhang,Yujing Wang,Jing Bai,Yan Zhang
标识
DOI:10.1145/3488560.3498524
摘要

Session-based recommendation aims to predict a user's next action based on previous actions in the current session. The major challenge is to capture authentic and complete user preferences in the entire session. Recent work utilizes graph structure to represent the entire session and adopts Graph Neural Network (GNN) to encode session information. This modeling choice has been proved to be effective and achieved remarkable results. However, most of the existing studies only consider each item within the session independently and do not capture session semantics from a high-level perspective. Such limitation often leads to severe information loss and increases the difficulty of capturing long-range dependencies within a session. Intuitively, compared with individual items, a session snippet, i.e., a group of locally consecutive items, is able to provide supplemental user intents which are hardly captured by existing methods. In this work, we propose to learn multi-granularity consecutive user intent unit to improve the recommendation performance. Specifically, we creatively propose Multi-granularity Intent Heterogeneous Session Graph (MIHSG) which captures the interactions between different granularity intent units and relieves the burden of long-dependency. Moreover, we propose the Intent Fusion Ranking (IFR) module to compose the recommendation results from various granularity user intents. Compared with current methods that only leverage intents from individual items, IFR benefits from different granularity user intents to generate more accurate and comprehensive session representation, thus eventually boosting recommendation performance. We conduct extensive experiments on five session-based recommendation datasets and the results demonstrate the effectiveness of our method. Compared to current state-of-the-art methods, we achieve as large as 10.21% gain on [email protected] and 15.53% gain on [email protected]
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助干秋白采纳,获得10
1秒前
1秒前
风雨1210发布了新的文献求助10
2秒前
文艺书雪完成签到 ,获得积分10
2秒前
独行侠完成签到,获得积分10
2秒前
3秒前
我测你码发布了新的文献求助10
3秒前
又要起名字完成签到,获得积分10
3秒前
3秒前
3秒前
damian完成签到,获得积分10
4秒前
LiShin发布了新的文献求助10
4秒前
渝州人应助凤凰山采纳,获得10
5秒前
sweetbearm应助凤凰山采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
yizhiGao应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
顾矜应助随机起的名采纳,获得10
5秒前
NN应助科研通管家采纳,获得10
5秒前
pinging应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
yizhiGao应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得20
6秒前
小小旋风应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
敬老院N号应助科研通管家采纳,获得30
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
yizhiGao应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
科研小白应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
文献缺缺应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
7秒前
调研昵称发布了新的文献求助10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794