已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning Multi-granularity Consecutive User Intent Unit for Session-based Recommendation

会话(web分析) 粒度 计算机科学 单位(环理论) 情报检索 多媒体 万维网 操作系统 心理学 数学教育
作者
Jiayan Guo,Yaming Yang,Xiangchen Song,Yuan Zhang,Yujing Wang,Jing Bai,Yan Zhang
标识
DOI:10.1145/3488560.3498524
摘要

Session-based recommendation aims to predict a user's next action based on previous actions in the current session. The major challenge is to capture authentic and complete user preferences in the entire session. Recent work utilizes graph structure to represent the entire session and adopts Graph Neural Network (GNN) to encode session information. This modeling choice has been proved to be effective and achieved remarkable results. However, most of the existing studies only consider each item within the session independently and do not capture session semantics from a high-level perspective. Such limitation often leads to severe information loss and increases the difficulty of capturing long-range dependencies within a session. Intuitively, compared with individual items, a session snippet, i.e., a group of locally consecutive items, is able to provide supplemental user intents which are hardly captured by existing methods. In this work, we propose to learn multi-granularity consecutive user intent unit to improve the recommendation performance. Specifically, we creatively propose Multi-granularity Intent Heterogeneous Session Graph (MIHSG) which captures the interactions between different granularity intent units and relieves the burden of long-dependency. Moreover, we propose the Intent Fusion Ranking (IFR) module to compose the recommendation results from various granularity user intents. Compared with current methods that only leverage intents from individual items, IFR benefits from different granularity user intents to generate more accurate and comprehensive session representation, thus eventually boosting recommendation performance. We conduct extensive experiments on five session-based recommendation datasets and the results demonstrate the effectiveness of our method. Compared to current state-of-the-art methods, we achieve as large as 10.21% gain on [email protected] and 15.53% gain on [email protected]
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助summer夏采纳,获得10
刚刚
kk完成签到,获得积分10
2秒前
小松鼠发布了新的文献求助20
6秒前
顾矜应助Zing采纳,获得10
6秒前
香蕉觅云应助顺顺利利采纳,获得10
8秒前
YUE发布了新的文献求助10
9秒前
LSH完成签到 ,获得积分10
10秒前
10秒前
白鸽应助吃人陈采纳,获得10
12秒前
思源应助banimadao采纳,获得10
12秒前
qian72133发布了新的文献求助30
13秒前
立恒儿完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
hhuajw发布了新的文献求助10
17秒前
乐乐应助Pluto采纳,获得10
17秒前
17秒前
19秒前
骨小梁发布了新的文献求助10
20秒前
21秒前
22秒前
奋斗若冰发布了新的文献求助100
23秒前
summer夏发布了新的文献求助10
23秒前
Lex完成签到 ,获得积分10
23秒前
Ttttt发布了新的文献求助10
23秒前
KINDMAGIC发布了新的文献求助10
24秒前
27秒前
yxyer发布了新的文献求助30
27秒前
个性的汲完成签到,获得积分10
28秒前
xuanxuan发布了新的文献求助40
28秒前
wanci应助醋溜爆肚儿采纳,获得10
29秒前
29秒前
30秒前
朴素若灵发布了新的文献求助10
30秒前
30秒前
科研通AI2S应助hhuajw采纳,获得10
30秒前
李健的小迷弟应助啵啵龙采纳,获得10
31秒前
彭于晏应助dpp采纳,获得10
32秒前
banimadao发布了新的文献求助10
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133652
求助须知:如何正确求助?哪些是违规求助? 2784626
关于积分的说明 7767874
捐赠科研通 2439828
什么是DOI,文献DOI怎么找? 1297069
科研通“疑难数据库(出版商)”最低求助积分说明 624840
版权声明 600791