Learning Multi-granularity Consecutive User Intent Unit for Session-based Recommendation

会话(web分析) 粒度 计算机科学 单位(环理论) 情报检索 多媒体 万维网 操作系统 心理学 数学教育
作者
Jiayan Guo,Yaming Yang,Xiangchen Song,Yuan Zhang,Yujing Wang,Jing Bai,Yan Zhang
标识
DOI:10.1145/3488560.3498524
摘要

Session-based recommendation aims to predict a user's next action based on previous actions in the current session. The major challenge is to capture authentic and complete user preferences in the entire session. Recent work utilizes graph structure to represent the entire session and adopts Graph Neural Network (GNN) to encode session information. This modeling choice has been proved to be effective and achieved remarkable results. However, most of the existing studies only consider each item within the session independently and do not capture session semantics from a high-level perspective. Such limitation often leads to severe information loss and increases the difficulty of capturing long-range dependencies within a session. Intuitively, compared with individual items, a session snippet, i.e., a group of locally consecutive items, is able to provide supplemental user intents which are hardly captured by existing methods. In this work, we propose to learn multi-granularity consecutive user intent unit to improve the recommendation performance. Specifically, we creatively propose Multi-granularity Intent Heterogeneous Session Graph (MIHSG) which captures the interactions between different granularity intent units and relieves the burden of long-dependency. Moreover, we propose the Intent Fusion Ranking (IFR) module to compose the recommendation results from various granularity user intents. Compared with current methods that only leverage intents from individual items, IFR benefits from different granularity user intents to generate more accurate and comprehensive session representation, thus eventually boosting recommendation performance. We conduct extensive experiments on five session-based recommendation datasets and the results demonstrate the effectiveness of our method. Compared to current state-of-the-art methods, we achieve as large as 10.21% gain on [email protected] and 15.53% gain on [email protected]
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zz完成签到 ,获得积分10
1秒前
FleeToMars完成签到 ,获得积分10
2秒前
晓晓发布了新的文献求助10
4秒前
4秒前
kirin完成签到 ,获得积分10
6秒前
6秒前
清新的白卉完成签到 ,获得积分10
8秒前
天天快乐应助大大小采纳,获得20
13秒前
炎星语发布了新的文献求助10
13秒前
mtfx完成签到 ,获得积分10
15秒前
哒哒猪发布了新的文献求助10
16秒前
WANG完成签到,获得积分10
17秒前
wcx完成签到,获得积分10
17秒前
眼睛大雨筠应助hsx采纳,获得30
18秒前
Hello应助yu采纳,获得10
19秒前
20秒前
大个应助Jiangzhibing采纳,获得10
26秒前
30秒前
匡佐英完成签到,获得积分20
31秒前
刘小源完成签到 ,获得积分10
32秒前
yu发布了新的文献求助10
33秒前
HWJ发布了新的文献求助10
33秒前
帅五进九发布了新的文献求助10
37秒前
nini907完成签到,获得积分20
38秒前
乐乐应助Hey采纳,获得10
38秒前
39秒前
jjamazing应助一碗小米饭采纳,获得10
39秒前
调皮的千万完成签到,获得积分10
39秒前
ZL完成签到 ,获得积分10
41秒前
41秒前
yu完成签到,获得积分10
42秒前
44秒前
无味发布了新的文献求助10
46秒前
nini907发布了新的文献求助10
47秒前
XU发布了新的文献求助10
49秒前
50秒前
zz完成签到,获得积分10
50秒前
szmsnail完成签到,获得积分10
52秒前
53秒前
55秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951007
求助须知:如何正确求助?哪些是违规求助? 3496402
关于积分的说明 11081862
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 801003