Direct tire slip ratio estimation using intelligent tire system and machine learning algorithms

滑移率 打滑(空气动力学) 支持向量机 稳健性(进化) 人工神经网络 汽车工程 工程类 算法 计算机科学 人工智能 控制理论(社会学) 航空航天工程 生物化学 化学 控制(管理) 制动器 基因
作者
Nan Xu,Zepeng Tang,Hassan Askari,Jianfeng Zhou,Amir Khajepour
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:175: 109085-109085 被引量:18
标识
DOI:10.1016/j.ymssp.2022.109085
摘要

Accurate estimation of the tire slip ratio is critical for vehicle safety, as it is necessary for vehicle control purposes. In this paper, an intelligent tire system is presented to develop a novel slip ratio estimation model using machine learning (ML) algorithms. The accelerations, generated by a triaxial accelerometer installed onto the inner liner of the tire, are varied when the tire rotates to update the contact patch. Meanwhile, the reference value of slip ratio can be measured by the MTS Flat-Trac tire test platform. Then, by analyzing the variation between the accelerations and slip ratio, highly useful features are discovered, which are especially promising for assessing vertical acceleration. For these features, ML algorithms are trained to build the slip ratio estimation model, in which the ML algorithms include artificial neural networks (ANNs), gradient boosting machines (GBMs), random forests (RFs), and support vector machines (SVMs). Finally, the estimated NRMS errors are evaluated using 10-fold cross-validation (CV). The proposed estimation model is able to estimate the slip ratio continuously and stably using only the acceleration from the intelligent tire system, and the estimated slip ratio range can reach 30%. The estimation results have high robustness to vehicle velocity and load, where the best NRMS errors can reach 4.88%. In summary, the present study with the fusion of an intelligent tire system and machine learning paves the way for the accurate estimation of the tire slip ratio under different driving conditions, which creates new opportunities for autonomous vehicles, intelligent tires, and tire slip ratio estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋板凳发布了新的文献求助10
刚刚
1秒前
1秒前
livrese完成签到 ,获得积分10
1秒前
2秒前
2秒前
哈哈哈哈完成签到,获得积分10
2秒前
木禾发布了新的文献求助150
3秒前
5秒前
6秒前
梁京关注了科研通微信公众号
6秒前
6秒前
南山无玫落关注了科研通微信公众号
7秒前
温汽水发布了新的文献求助10
8秒前
酥酥发布了新的文献求助10
8秒前
9秒前
Quinn完成签到,获得积分10
10秒前
10秒前
10秒前
小葡萄完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
seven发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
朱中革发布了新的文献求助10
13秒前
无花果应助声声慢采纳,获得10
14秒前
14秒前
恰好发布了新的文献求助10
15秒前
Teirow完成签到 ,获得积分10
15秒前
16秒前
Philthee发布了新的文献求助10
16秒前
孤虹哲凝发布了新的文献求助30
16秒前
sjh完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154309
求助须知:如何正确求助?哪些是违规求助? 2805114
关于积分的说明 7863632
捐赠科研通 2463326
什么是DOI,文献DOI怎么找? 1311205
科研通“疑难数据库(出版商)”最低求助积分说明 629506
版权声明 601821