Bulk metallic glass cantilever beams: Outstanding at large-deflection deformation and their application in complaint mechanisms

悬臂梁 偏转(物理) 材料科学 抗弯强度 非晶态金属 微电子机械系统 结构工程 复合材料 梁(结构) 模数 光学 纳米技术 物理 工程类 合金
作者
Diao-Feng Li,Chunguang Bai,Zhiqiang Zhang
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:906: 164335-164335 被引量:3
标识
DOI:10.1016/j.jallcom.2022.164335
摘要

Excellent combination of mechanical properties of bulk metallic glasses (BMGs) are a class of relatively young and promising candidate materials for compliant mechanisms (CMs), which are usually associated with the nonlinear large-deflection deformation. In this study, an effective design strategy was proposed to enhance the flexibility of BMG cantilever beam quantitatively, which by means of increasing the ratio of loading distance to beam thickness. Moreover, the accuracy of modulus of elasticity in bending, Eb, which measured by cantilever bending test was affected seriously by the support compliance of the fixed end, and the accurate Eb value of BMG beam can be attained after eliminating this influencing factor. The critical boundary condition of cantilever beams within the scope of small-deflection deformation was identified, which situates at non-dimensional deflection parameter, δy/L, is 0.2. Correspondingly, the critical loading distance-to-thickness ratios, (L/t)c, of cantilever beams within small-deflection deformation were derived for BMGs and conventional crystalline metals, which provide a criterion to predict the potential to achieving large-deflection deformation. It is noticed that by plotting the flexural stress-δy/L relations for BMG and several conventional crystalline metals used in CMs, the unique advantages of BMG cantilever beam in the aspect of achieving large-deflection deformation and enduring higher flexural stress can be reflected more intuitively. These advantages of BMG cantilever beam are well suitable for CMs which designed to have a small footprint and requirement of large-deflection motions, such as in the fields of microelectromechanical systems (MEMS) and biomedicines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷妙梦发布了新的文献求助10
刚刚
qym完成签到,获得积分20
刚刚
木子发布了新的文献求助10
1秒前
喜悦芝麻完成签到 ,获得积分10
1秒前
大罗发布了新的文献求助10
1秒前
宇宙第一帅完成签到,获得积分10
1秒前
马里奥好难完成签到 ,获得积分10
1秒前
一颗大树完成签到,获得积分10
1秒前
orixero应助小王采纳,获得10
1秒前
fbdenrnb完成签到,获得积分20
1秒前
2秒前
不配.应助文光采纳,获得20
2秒前
不配.应助AA采纳,获得20
2秒前
科目三应助清新的忘幽采纳,获得10
3秒前
pluto应助清新的忘幽采纳,获得10
3秒前
Hello应助清新的忘幽采纳,获得30
3秒前
bkagyin应助清新的忘幽采纳,获得30
3秒前
研友_VZG7GZ应助清新的忘幽采纳,获得10
3秒前
科研通AI2S应助清新的忘幽采纳,获得10
3秒前
英姑应助清新的忘幽采纳,获得10
3秒前
科研通AI2S应助清新的忘幽采纳,获得10
3秒前
酷波er应助清新的忘幽采纳,获得30
3秒前
田様应助jessie采纳,获得10
4秒前
葉鳳怡完成签到 ,获得积分10
4秒前
董竹君完成签到,获得积分10
4秒前
CodeCraft应助123lx采纳,获得10
4秒前
6秒前
太叔夜南完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
朱文琛完成签到,获得积分10
8秒前
feiyu完成签到,获得积分10
8秒前
结实灭男完成签到,获得积分10
8秒前
感性的俊驰完成签到,获得积分10
8秒前
李瑞康完成签到 ,获得积分10
9秒前
大模型应助董竹君采纳,获得10
9秒前
66647完成签到,获得积分10
9秒前
端庄的萝完成签到,获得积分10
10秒前
啦啦啦发布了新的文献求助10
10秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134472
求助须知:如何正确求助?哪些是违规求助? 2785402
关于积分的说明 7772258
捐赠科研通 2441051
什么是DOI,文献DOI怎么找? 1297713
科研通“疑难数据库(出版商)”最低求助积分说明 625042
版权声明 600813