An accurate and explainable ensemble learning method for carotid plaque prediction in an asymptomatic population

可解释性 决策树 人工智能 随机森林 机器学习 计算机科学 支持向量机 无症状的 梯度升压 集成学习 医学 人口 亚临床感染 模式识别(心理学) 内科学 环境卫生
作者
Dan Wu,Guosheng Cui,Xiaoxiang Huang,Yining Chen,Guanzheng Liu,Lijie Ren,Ye Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:221: 106842-106842 被引量:8
标识
DOI:10.1016/j.cmpb.2022.106842
摘要

The identification of carotid plaque, one of the most crucial tasks in stroke screening, is of great significance in the assessment of subclinical atherosclerosis and preventing the onset of stroke. However, traditional ultrasound examination is not prevalent or cost-effective for asymptomatic people, particularly low-income individuals in rural areas. Thus, it is necessary to develop an accurate and explainable model for early identification of the risk of plaque prevalence that can help in the primary prevention of stroke.We developed an ensemble learning method to predict the occurrence of carotid plaques. A dataset comprising 1440 subjects (50% with plaques and 50% without plaques) and ten-fold cross-validation were utilized to evaluate the model performance. Four machine learning methods (extreme gradient boosting (XGBoost), gradient boosting decision tree, random forest, and support vector machine) were evaluated. Subsequently, the interpretability of the XGBoost model, which provided the best performance, was analyzed from three aspects: feature importance, feature effect on prediction model, and feature effect on prediction decision for a specific subject.The XGBoost algorithm provided the best performance (sensitivity: 0.8678, specificity: 0.8592, accuracy: 0.8632, F1 score: 0.8621, area under the curve: 0.8635) in carotid plaque prediction and also had excellent performance under missing data circumstances. Further, interpretability analysis showed that the decisions of the XGBoost model were highly congruent with clinical knowledge.The model results are superior to those of state-of-the-art methods. Thus, it is a promising carotid plaque prediction tool that could be used in the primary prevention of stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助糊涂的清醒者采纳,获得10
刚刚
健康的绮晴完成签到,获得积分10
1秒前
1秒前
2秒前
rwang1105应助briliian采纳,获得10
5秒前
Owen应助33采纳,获得10
5秒前
7秒前
racill完成签到 ,获得积分10
8秒前
sliver完成签到,获得积分10
8秒前
论文中完成签到 ,获得积分10
9秒前
冰凌心恋发布了新的文献求助10
10秒前
huayu发布了新的文献求助10
11秒前
无情的板栗完成签到,获得积分10
13秒前
14秒前
管理想发布了新的文献求助10
15秒前
cwy完成签到,获得积分10
15秒前
东东东完成签到 ,获得积分10
16秒前
大模型应助OncE采纳,获得10
17秒前
零听发布了新的文献求助10
17秒前
17秒前
18秒前
呼呼兔发布了新的文献求助10
19秒前
20秒前
香芋应助弯弯采纳,获得10
21秒前
白樱恋曲发布了新的文献求助10
21秒前
22秒前
23秒前
27秒前
在水一方应助成就幻竹采纳,获得10
27秒前
27秒前
零听完成签到,获得积分10
27秒前
子车茗应助hou2012采纳,获得30
28秒前
轻松的万天完成签到 ,获得积分10
28秒前
tomalan发布了新的文献求助10
28秒前
LK发布了新的文献求助10
31秒前
35秒前
ariaooo完成签到,获得积分10
35秒前
38秒前
41秒前
41秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343244
求助须知:如何正确求助?哪些是违规求助? 2970337
关于积分的说明 8643416
捐赠科研通 2650267
什么是DOI,文献DOI怎么找? 1451220
科研通“疑难数据库(出版商)”最低求助积分说明 672116
邀请新用户注册赠送积分活动 661447