亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An accurate and explainable ensemble learning method for carotid plaque prediction in an asymptomatic population

可解释性 决策树 人工智能 随机森林 机器学习 计算机科学 支持向量机 无症状的 梯度升压 集成学习 医学 人口 亚临床感染 模式识别(心理学) 内科学 环境卫生
作者
Dan Wu,Guosheng Cui,Xiaoxiang Huang,Yining Chen,Guanzheng Liu,Lijie Ren,Ye Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:221: 106842-106842 被引量:15
标识
DOI:10.1016/j.cmpb.2022.106842
摘要

The identification of carotid plaque, one of the most crucial tasks in stroke screening, is of great significance in the assessment of subclinical atherosclerosis and preventing the onset of stroke. However, traditional ultrasound examination is not prevalent or cost-effective for asymptomatic people, particularly low-income individuals in rural areas. Thus, it is necessary to develop an accurate and explainable model for early identification of the risk of plaque prevalence that can help in the primary prevention of stroke.We developed an ensemble learning method to predict the occurrence of carotid plaques. A dataset comprising 1440 subjects (50% with plaques and 50% without plaques) and ten-fold cross-validation were utilized to evaluate the model performance. Four machine learning methods (extreme gradient boosting (XGBoost), gradient boosting decision tree, random forest, and support vector machine) were evaluated. Subsequently, the interpretability of the XGBoost model, which provided the best performance, was analyzed from three aspects: feature importance, feature effect on prediction model, and feature effect on prediction decision for a specific subject.The XGBoost algorithm provided the best performance (sensitivity: 0.8678, specificity: 0.8592, accuracy: 0.8632, F1 score: 0.8621, area under the curve: 0.8635) in carotid plaque prediction and also had excellent performance under missing data circumstances. Further, interpretability analysis showed that the decisions of the XGBoost model were highly congruent with clinical knowledge.The model results are superior to those of state-of-the-art methods. Thus, it is a promising carotid plaque prediction tool that could be used in the primary prevention of stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YHF2完成签到,获得积分10
1秒前
11秒前
doublenine18发布了新的文献求助30
16秒前
17秒前
李丹阳完成签到,获得积分10
42秒前
Criminology34举报zz求助涉嫌违规
44秒前
50秒前
Bin_Liu发布了新的文献求助10
55秒前
56秒前
1分钟前
科研通AI6应助风华正茂采纳,获得10
1分钟前
1分钟前
橘橘橘子皮完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
布吉岛呀完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
风华正茂发布了新的文献求助10
2分钟前
deng203完成签到,获得积分10
2分钟前
2分钟前
Bin_Liu完成签到,获得积分20
2分钟前
量子星尘发布了新的文献求助10
2分钟前
潘小嘎完成签到 ,获得积分10
3分钟前
sswy完成签到 ,获得积分10
3分钟前
4分钟前
神明完成签到 ,获得积分10
4分钟前
4分钟前
WW完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
无情墨镜发布了新的文献求助10
4分钟前
5分钟前
Feng完成签到 ,获得积分10
5分钟前
坦率广山发布了新的文献求助10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639678
求助须知:如何正确求助?哪些是违规求助? 4749674
关于积分的说明 15007074
捐赠科研通 4797837
什么是DOI,文献DOI怎么找? 2563943
邀请新用户注册赠送积分活动 1522817
关于科研通互助平台的介绍 1482514