已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An accurate and explainable ensemble learning method for carotid plaque prediction in an asymptomatic population

可解释性 决策树 人工智能 随机森林 机器学习 计算机科学 支持向量机 无症状的 梯度升压 集成学习 医学 人口 亚临床感染 模式识别(心理学) 内科学 环境卫生
作者
Dan Wu,Guosheng Cui,Xiaoxiang Huang,Yining Chen,Guanzheng Liu,Lijie Ren,Ye Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:221: 106842-106842 被引量:15
标识
DOI:10.1016/j.cmpb.2022.106842
摘要

The identification of carotid plaque, one of the most crucial tasks in stroke screening, is of great significance in the assessment of subclinical atherosclerosis and preventing the onset of stroke. However, traditional ultrasound examination is not prevalent or cost-effective for asymptomatic people, particularly low-income individuals in rural areas. Thus, it is necessary to develop an accurate and explainable model for early identification of the risk of plaque prevalence that can help in the primary prevention of stroke.We developed an ensemble learning method to predict the occurrence of carotid plaques. A dataset comprising 1440 subjects (50% with plaques and 50% without plaques) and ten-fold cross-validation were utilized to evaluate the model performance. Four machine learning methods (extreme gradient boosting (XGBoost), gradient boosting decision tree, random forest, and support vector machine) were evaluated. Subsequently, the interpretability of the XGBoost model, which provided the best performance, was analyzed from three aspects: feature importance, feature effect on prediction model, and feature effect on prediction decision for a specific subject.The XGBoost algorithm provided the best performance (sensitivity: 0.8678, specificity: 0.8592, accuracy: 0.8632, F1 score: 0.8621, area under the curve: 0.8635) in carotid plaque prediction and also had excellent performance under missing data circumstances. Further, interpretability analysis showed that the decisions of the XGBoost model were highly congruent with clinical knowledge.The model results are superior to those of state-of-the-art methods. Thus, it is a promising carotid plaque prediction tool that could be used in the primary prevention of stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小b亮完成签到 ,获得积分10
1秒前
2秒前
iwaking完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
ycy完成签到,获得积分10
5秒前
9秒前
共享精神应助高贵焦采纳,获得10
9秒前
TaoJ发布了新的文献求助10
10秒前
wsb76完成签到 ,获得积分10
11秒前
玉子完成签到 ,获得积分10
12秒前
爆米花应助季裕采纳,获得10
14秒前
景承完成签到 ,获得积分10
15秒前
曾瀚宇完成签到,获得积分10
15秒前
Tracy完成签到 ,获得积分10
15秒前
化学课die表完成签到 ,获得积分10
17秒前
慕青应助馍馍采纳,获得10
18秒前
11112321321完成签到 ,获得积分10
19秒前
英俊的铭应助zhaoshuo采纳,获得10
22秒前
llc完成签到 ,获得积分10
28秒前
姜1完成签到 ,获得积分10
29秒前
标致金毛完成签到,获得积分10
29秒前
31秒前
32秒前
英姑应助尊敬的雪珍采纳,获得10
32秒前
33秒前
标致金毛发布了新的文献求助10
33秒前
kendall发布了新的文献求助10
33秒前
ty12390完成签到,获得积分10
34秒前
深情安青应助ty12390采纳,获得10
37秒前
37秒前
小熊发布了新的文献求助10
38秒前
LY发布了新的文献求助10
42秒前
43秒前
44秒前
47秒前
彭于晏应助cheese采纳,获得10
47秒前
小熊完成签到 ,获得积分10
47秒前
hehexuexi1关注了科研通微信公众号
47秒前
刘婉敏完成签到 ,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779546
求助须知:如何正确求助?哪些是违规求助? 5648402
关于积分的说明 15451994
捐赠科研通 4910795
什么是DOI,文献DOI怎么找? 2642900
邀请新用户注册赠送积分活动 1590549
关于科研通互助平台的介绍 1544981