An accurate and explainable ensemble learning method for carotid plaque prediction in an asymptomatic population

可解释性 决策树 人工智能 随机森林 机器学习 计算机科学 支持向量机 无症状的 梯度升压 集成学习 医学 人口 亚临床感染 模式识别(心理学) 内科学 环境卫生
作者
Dan Wu,Guosheng Cui,Xiaoxiang Huang,Yining Chen,Guanzheng Liu,Lijie Ren,Ye Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:221: 106842-106842 被引量:11
标识
DOI:10.1016/j.cmpb.2022.106842
摘要

The identification of carotid plaque, one of the most crucial tasks in stroke screening, is of great significance in the assessment of subclinical atherosclerosis and preventing the onset of stroke. However, traditional ultrasound examination is not prevalent or cost-effective for asymptomatic people, particularly low-income individuals in rural areas. Thus, it is necessary to develop an accurate and explainable model for early identification of the risk of plaque prevalence that can help in the primary prevention of stroke.We developed an ensemble learning method to predict the occurrence of carotid plaques. A dataset comprising 1440 subjects (50% with plaques and 50% without plaques) and ten-fold cross-validation were utilized to evaluate the model performance. Four machine learning methods (extreme gradient boosting (XGBoost), gradient boosting decision tree, random forest, and support vector machine) were evaluated. Subsequently, the interpretability of the XGBoost model, which provided the best performance, was analyzed from three aspects: feature importance, feature effect on prediction model, and feature effect on prediction decision for a specific subject.The XGBoost algorithm provided the best performance (sensitivity: 0.8678, specificity: 0.8592, accuracy: 0.8632, F1 score: 0.8621, area under the curve: 0.8635) in carotid plaque prediction and also had excellent performance under missing data circumstances. Further, interpretability analysis showed that the decisions of the XGBoost model were highly congruent with clinical knowledge.The model results are superior to those of state-of-the-art methods. Thus, it is a promising carotid plaque prediction tool that could be used in the primary prevention of stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助勤恳凡之采纳,获得10
刚刚
满意沛槐完成签到 ,获得积分10
1秒前
wwy发布了新的文献求助10
1秒前
Amy发布了新的文献求助20
1秒前
2秒前
2秒前
ding应助zzznznnn采纳,获得10
3秒前
3秒前
5秒前
小马嘻嘻完成签到,获得积分10
5秒前
雪上一枝蒿完成签到,获得积分10
5秒前
JamesPei应助石浩宇shy采纳,获得10
6秒前
z.发布了新的文献求助20
6秒前
苹果萧完成签到 ,获得积分10
7秒前
思源应助温伊采纳,获得10
8秒前
yhyhyh发布了新的文献求助10
9秒前
10秒前
dynamoo应助lip采纳,获得10
10秒前
11秒前
11秒前
paperx发布了新的文献求助10
13秒前
13秒前
imao发布了新的文献求助10
13秒前
14秒前
yhyhyh完成签到,获得积分10
15秒前
言论完成签到 ,获得积分10
15秒前
123567发布了新的文献求助10
15秒前
123567发布了新的文献求助10
15秒前
沙心应助lyx采纳,获得10
16秒前
Lyven发布了新的文献求助10
16秒前
温柔的中蓝完成签到,获得积分10
17秒前
17秒前
淡定的一德完成签到,获得积分10
17秒前
蓝色天空完成签到,获得积分10
17秒前
宇宙无敌超级大帅哥完成签到,获得积分10
20秒前
石浩宇shy发布了新的文献求助10
20秒前
zzznznnn发布了新的文献求助10
21秒前
23秒前
orixero应助wrzymh采纳,获得10
23秒前
争气完成签到,获得积分10
24秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213148
求助须知:如何正确求助?哪些是违规求助? 4389063
关于积分的说明 13665899
捐赠科研通 4250024
什么是DOI,文献DOI怎么找? 2331888
邀请新用户注册赠送积分活动 1329543
关于科研通互助平台的介绍 1283086