An accurate and explainable ensemble learning method for carotid plaque prediction in an asymptomatic population

可解释性 决策树 人工智能 随机森林 机器学习 计算机科学 支持向量机 无症状的 梯度升压 集成学习 医学 人口 亚临床感染 模式识别(心理学) 内科学 环境卫生
作者
Dan Wu,Guosheng Cui,Xiaoxiang Huang,Yining Chen,Guanzheng Liu,Lijie Ren,Ye Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:221: 106842-106842 被引量:8
标识
DOI:10.1016/j.cmpb.2022.106842
摘要

The identification of carotid plaque, one of the most crucial tasks in stroke screening, is of great significance in the assessment of subclinical atherosclerosis and preventing the onset of stroke. However, traditional ultrasound examination is not prevalent or cost-effective for asymptomatic people, particularly low-income individuals in rural areas. Thus, it is necessary to develop an accurate and explainable model for early identification of the risk of plaque prevalence that can help in the primary prevention of stroke.We developed an ensemble learning method to predict the occurrence of carotid plaques. A dataset comprising 1440 subjects (50% with plaques and 50% without plaques) and ten-fold cross-validation were utilized to evaluate the model performance. Four machine learning methods (extreme gradient boosting (XGBoost), gradient boosting decision tree, random forest, and support vector machine) were evaluated. Subsequently, the interpretability of the XGBoost model, which provided the best performance, was analyzed from three aspects: feature importance, feature effect on prediction model, and feature effect on prediction decision for a specific subject.The XGBoost algorithm provided the best performance (sensitivity: 0.8678, specificity: 0.8592, accuracy: 0.8632, F1 score: 0.8621, area under the curve: 0.8635) in carotid plaque prediction and also had excellent performance under missing data circumstances. Further, interpretability analysis showed that the decisions of the XGBoost model were highly congruent with clinical knowledge.The model results are superior to those of state-of-the-art methods. Thus, it is a promising carotid plaque prediction tool that could be used in the primary prevention of stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜雨完成签到,获得积分10
刚刚
freedom完成签到,获得积分10
1秒前
jwj发布了新的文献求助10
1秒前
留白发布了新的文献求助10
1秒前
潮汐完成签到,获得积分10
2秒前
2秒前
2秒前
明芷蝶完成签到,获得积分10
2秒前
宝海青发布了新的文献求助10
4秒前
4秒前
Caleb完成签到,获得积分10
4秒前
小二郎应助ottsannn采纳,获得10
4秒前
DXSW0415完成签到,获得积分10
5秒前
6秒前
传奇3应助左辄采纳,获得10
6秒前
7秒前
von完成签到,获得积分10
7秒前
masheng完成签到,获得积分10
8秒前
星空物语完成签到,获得积分10
8秒前
8秒前
mr发布了新的文献求助10
8秒前
8秒前
demon应助freedom采纳,获得10
9秒前
9秒前
棋士应助AIMS采纳,获得10
10秒前
朱慧龙完成签到 ,获得积分10
10秒前
ironsilica完成签到,获得积分10
10秒前
10秒前
DXSW0415发布了新的文献求助20
11秒前
11秒前
Joy完成签到,获得积分10
11秒前
masheng发布了新的文献求助30
11秒前
12秒前
SciGPT应助mr采纳,获得10
12秒前
小陈要发SCI完成签到,获得积分10
12秒前
樊妥妥发布了新的文献求助10
12秒前
魔幻采梦完成签到 ,获得积分20
12秒前
科研抖擞完成签到,获得积分20
12秒前
12秒前
xin_you完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950635
求助须知:如何正确求助?哪些是违规求助? 3496094
关于积分的说明 11080521
捐赠科研通 3226507
什么是DOI,文献DOI怎么找? 1783918
邀请新用户注册赠送积分活动 867946
科研通“疑难数据库(出版商)”最低求助积分说明 800993