An accurate and explainable ensemble learning method for carotid plaque prediction in an asymptomatic population

可解释性 决策树 人工智能 随机森林 机器学习 计算机科学 支持向量机 无症状的 梯度升压 集成学习 医学 人口 亚临床感染 模式识别(心理学) 内科学 环境卫生
作者
Dan Wu,Guosheng Cui,Xiaoxiang Huang,Yining Chen,Guanzheng Liu,Lijie Ren,Ye Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:221: 106842-106842 被引量:15
标识
DOI:10.1016/j.cmpb.2022.106842
摘要

The identification of carotid plaque, one of the most crucial tasks in stroke screening, is of great significance in the assessment of subclinical atherosclerosis and preventing the onset of stroke. However, traditional ultrasound examination is not prevalent or cost-effective for asymptomatic people, particularly low-income individuals in rural areas. Thus, it is necessary to develop an accurate and explainable model for early identification of the risk of plaque prevalence that can help in the primary prevention of stroke.We developed an ensemble learning method to predict the occurrence of carotid plaques. A dataset comprising 1440 subjects (50% with plaques and 50% without plaques) and ten-fold cross-validation were utilized to evaluate the model performance. Four machine learning methods (extreme gradient boosting (XGBoost), gradient boosting decision tree, random forest, and support vector machine) were evaluated. Subsequently, the interpretability of the XGBoost model, which provided the best performance, was analyzed from three aspects: feature importance, feature effect on prediction model, and feature effect on prediction decision for a specific subject.The XGBoost algorithm provided the best performance (sensitivity: 0.8678, specificity: 0.8592, accuracy: 0.8632, F1 score: 0.8621, area under the curve: 0.8635) in carotid plaque prediction and also had excellent performance under missing data circumstances. Further, interpretability analysis showed that the decisions of the XGBoost model were highly congruent with clinical knowledge.The model results are superior to those of state-of-the-art methods. Thus, it is a promising carotid plaque prediction tool that could be used in the primary prevention of stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
智挂东南枝完成签到,获得积分10
1秒前
7777777发布了新的文献求助10
2秒前
3秒前
5秒前
5秒前
汉堡包应助sky采纳,获得10
6秒前
小海绵完成签到,获得积分10
7秒前
hlll完成签到 ,获得积分10
7秒前
危机的慕卉完成签到 ,获得积分10
8秒前
Criminology34应助双儿采纳,获得10
8秒前
周才完成签到 ,获得积分10
8秒前
高兴的小馒头完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
niki完成签到,获得积分20
12秒前
God_wei3完成签到,获得积分10
12秒前
12秒前
12秒前
HaniRxf完成签到,获得积分20
13秒前
量子星尘发布了新的文献求助10
15秒前
含蓄的三颜完成签到,获得积分10
17秒前
Dick发布了新的文献求助10
17秒前
17秒前
蓝天发布了新的文献求助10
17秒前
zaaaz完成签到,获得积分10
18秒前
赘婿应助tidongzhiwu采纳,获得10
18秒前
18秒前
无极微光应助王艳采纳,获得20
18秒前
壮观的莺完成签到 ,获得积分10
19秒前
WMT完成签到 ,获得积分10
19秒前
urologywang发布了新的文献求助30
19秒前
雪白的康发布了新的文献求助50
20秒前
科研通AI2S应助现代代桃采纳,获得10
23秒前
23秒前
23秒前
壮观的莺关注了科研通微信公众号
23秒前
24秒前
比格蹦蹦发布了新的文献求助10
24秒前
彧九发布了新的文献求助10
24秒前
Rgly完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734809
求助须知:如何正确求助?哪些是违规求助? 5356250
关于积分的说明 15327788
捐赠科研通 4879347
什么是DOI,文献DOI怎么找? 2621815
邀请新用户注册赠送积分活动 1571046
关于科研通互助平台的介绍 1527826