An accurate and explainable ensemble learning method for carotid plaque prediction in an asymptomatic population

可解释性 决策树 人工智能 随机森林 机器学习 计算机科学 支持向量机 无症状的 梯度升压 集成学习 医学 人口 亚临床感染 模式识别(心理学) 内科学 环境卫生
作者
Dan Wu,Guosheng Cui,Xiaoxiang Huang,Yining Chen,Guanzheng Liu,Lijie Ren,Ye Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:221: 106842-106842 被引量:15
标识
DOI:10.1016/j.cmpb.2022.106842
摘要

The identification of carotid plaque, one of the most crucial tasks in stroke screening, is of great significance in the assessment of subclinical atherosclerosis and preventing the onset of stroke. However, traditional ultrasound examination is not prevalent or cost-effective for asymptomatic people, particularly low-income individuals in rural areas. Thus, it is necessary to develop an accurate and explainable model for early identification of the risk of plaque prevalence that can help in the primary prevention of stroke.We developed an ensemble learning method to predict the occurrence of carotid plaques. A dataset comprising 1440 subjects (50% with plaques and 50% without plaques) and ten-fold cross-validation were utilized to evaluate the model performance. Four machine learning methods (extreme gradient boosting (XGBoost), gradient boosting decision tree, random forest, and support vector machine) were evaluated. Subsequently, the interpretability of the XGBoost model, which provided the best performance, was analyzed from three aspects: feature importance, feature effect on prediction model, and feature effect on prediction decision for a specific subject.The XGBoost algorithm provided the best performance (sensitivity: 0.8678, specificity: 0.8592, accuracy: 0.8632, F1 score: 0.8621, area under the curve: 0.8635) in carotid plaque prediction and also had excellent performance under missing data circumstances. Further, interpretability analysis showed that the decisions of the XGBoost model were highly congruent with clinical knowledge.The model results are superior to those of state-of-the-art methods. Thus, it is a promising carotid plaque prediction tool that could be used in the primary prevention of stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酱子发布了新的文献求助10
刚刚
1秒前
fufufu123完成签到,获得积分10
1秒前
zhaosh完成签到,获得积分10
2秒前
微笑的li发布了新的文献求助10
2秒前
2秒前
哈雷彗星完成签到,获得积分10
2秒前
拼搏的云朵给拼搏的云朵的求助进行了留言
2秒前
02发布了新的文献求助10
3秒前
从容完成签到,获得积分10
3秒前
zz完成签到,获得积分20
4秒前
悦24发布了新的文献求助10
4秒前
4秒前
111舒舒完成签到 ,获得积分10
4秒前
1700360436完成签到,获得积分10
4秒前
哈哈完成签到,获得积分10
4秒前
Matthew_G完成签到,获得积分10
4秒前
5秒前
Ye完成签到,获得积分10
5秒前
白蒲桃完成签到 ,获得积分10
5秒前
机智冬瓜完成签到,获得积分10
5秒前
5秒前
希望天下0贩的0应助水123采纳,获得10
5秒前
KKKK发布了新的文献求助10
6秒前
郝雨完成签到,获得积分10
6秒前
文艺白羊发布了新的文献求助10
6秒前
6秒前
安详流沙发布了新的文献求助10
7秒前
Ttttracy完成签到 ,获得积分10
7秒前
7秒前
Shaw完成签到,获得积分10
8秒前
专注怜寒发布了新的文献求助10
8秒前
8秒前
Redream完成签到,获得积分10
8秒前
10秒前
单纯的沂关注了科研通微信公众号
10秒前
情怀应助BDH采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
HYLynn完成签到,获得积分10
11秒前
wendy完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659492
求助须知:如何正确求助?哪些是违规求助? 4828970
关于积分的说明 15087038
捐赠科研通 4818112
什么是DOI,文献DOI怎么找? 2578548
邀请新用户注册赠送积分活动 1533152
关于科研通互助平台的介绍 1491834