已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An accurate and explainable ensemble learning method for carotid plaque prediction in an asymptomatic population

可解释性 决策树 人工智能 随机森林 机器学习 计算机科学 支持向量机 无症状的 梯度升压 集成学习 医学 人口 亚临床感染 模式识别(心理学) 内科学 环境卫生
作者
Dan Wu,Guosheng Cui,Xiaoxiang Huang,Yining Chen,Guanzheng Liu,Lijie Ren,Ye Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:221: 106842-106842 被引量:15
标识
DOI:10.1016/j.cmpb.2022.106842
摘要

The identification of carotid plaque, one of the most crucial tasks in stroke screening, is of great significance in the assessment of subclinical atherosclerosis and preventing the onset of stroke. However, traditional ultrasound examination is not prevalent or cost-effective for asymptomatic people, particularly low-income individuals in rural areas. Thus, it is necessary to develop an accurate and explainable model for early identification of the risk of plaque prevalence that can help in the primary prevention of stroke.We developed an ensemble learning method to predict the occurrence of carotid plaques. A dataset comprising 1440 subjects (50% with plaques and 50% without plaques) and ten-fold cross-validation were utilized to evaluate the model performance. Four machine learning methods (extreme gradient boosting (XGBoost), gradient boosting decision tree, random forest, and support vector machine) were evaluated. Subsequently, the interpretability of the XGBoost model, which provided the best performance, was analyzed from three aspects: feature importance, feature effect on prediction model, and feature effect on prediction decision for a specific subject.The XGBoost algorithm provided the best performance (sensitivity: 0.8678, specificity: 0.8592, accuracy: 0.8632, F1 score: 0.8621, area under the curve: 0.8635) in carotid plaque prediction and also had excellent performance under missing data circumstances. Further, interpretability analysis showed that the decisions of the XGBoost model were highly congruent with clinical knowledge.The model results are superior to those of state-of-the-art methods. Thus, it is a promising carotid plaque prediction tool that could be used in the primary prevention of stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好运完成签到 ,获得积分10
刚刚
科研通AI6.1应助王先生采纳,获得10
2秒前
DDL应助学术牛马采纳,获得10
2秒前
吕佳蔚完成签到 ,获得积分10
4秒前
清秀的金鱼应助wu采纳,获得10
5秒前
美满的雁桃完成签到 ,获得积分10
6秒前
8秒前
撒旦asd发布了新的文献求助10
9秒前
机智的嘻嘻完成签到 ,获得积分10
10秒前
11秒前
xch完成签到,获得积分10
11秒前
13秒前
lyncee完成签到,获得积分10
13秒前
Lucas应助发的不太好采纳,获得10
14秒前
nono完成签到 ,获得积分10
16秒前
梨凉完成签到,获得积分10
16秒前
yangy0519完成签到,获得积分20
16秒前
科研通AI6.1应助开心夏真采纳,获得10
17秒前
英俊的铭应助添添采纳,获得10
20秒前
23秒前
24秒前
汉堡包应助财荫夹印采纳,获得10
25秒前
科研通AI6.1应助Oscillator采纳,获得10
26秒前
妖妖灵1111完成签到 ,获得积分10
29秒前
yanni发布了新的文献求助30
30秒前
李健应助Cl采纳,获得10
30秒前
30秒前
寻道图强应助科研通管家采纳,获得50
31秒前
31秒前
科研之路完成签到,获得积分10
32秒前
脑洞疼应助科研通管家采纳,获得10
34秒前
深情安青应助科研通管家采纳,获得10
34秒前
寻道图强应助科研通管家采纳,获得50
34秒前
34秒前
wanci应助科研通管家采纳,获得10
34秒前
汉堡包应助科研通管家采纳,获得10
34秒前
水shui完成签到,获得积分10
35秒前
木子完成签到 ,获得积分10
36秒前
开心夏真发布了新的文献求助10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772121
求助须知:如何正确求助?哪些是违规求助? 5596217
关于积分的说明 15429142
捐赠科研通 4905232
什么是DOI,文献DOI怎么找? 2639279
邀请新用户注册赠送积分活动 1587204
关于科研通互助平台的介绍 1542058