An accurate and explainable ensemble learning method for carotid plaque prediction in an asymptomatic population

可解释性 决策树 人工智能 随机森林 机器学习 计算机科学 支持向量机 无症状的 梯度升压 集成学习 医学 人口 亚临床感染 模式识别(心理学) 内科学 环境卫生
作者
Dan Wu,Guosheng Cui,Xiaoxiang Huang,Yining Chen,Guanzheng Liu,Lijie Ren,Ye Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:221: 106842-106842 被引量:11
标识
DOI:10.1016/j.cmpb.2022.106842
摘要

The identification of carotid plaque, one of the most crucial tasks in stroke screening, is of great significance in the assessment of subclinical atherosclerosis and preventing the onset of stroke. However, traditional ultrasound examination is not prevalent or cost-effective for asymptomatic people, particularly low-income individuals in rural areas. Thus, it is necessary to develop an accurate and explainable model for early identification of the risk of plaque prevalence that can help in the primary prevention of stroke.We developed an ensemble learning method to predict the occurrence of carotid plaques. A dataset comprising 1440 subjects (50% with plaques and 50% without plaques) and ten-fold cross-validation were utilized to evaluate the model performance. Four machine learning methods (extreme gradient boosting (XGBoost), gradient boosting decision tree, random forest, and support vector machine) were evaluated. Subsequently, the interpretability of the XGBoost model, which provided the best performance, was analyzed from three aspects: feature importance, feature effect on prediction model, and feature effect on prediction decision for a specific subject.The XGBoost algorithm provided the best performance (sensitivity: 0.8678, specificity: 0.8592, accuracy: 0.8632, F1 score: 0.8621, area under the curve: 0.8635) in carotid plaque prediction and also had excellent performance under missing data circumstances. Further, interpretability analysis showed that the decisions of the XGBoost model were highly congruent with clinical knowledge.The model results are superior to those of state-of-the-art methods. Thus, it is a promising carotid plaque prediction tool that could be used in the primary prevention of stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TURBO发布了新的文献求助10
2秒前
落雪完成签到 ,获得积分10
12秒前
背书强完成签到 ,获得积分10
22秒前
27秒前
简单幸福完成签到 ,获得积分0
27秒前
喵喵完成签到 ,获得积分10
29秒前
默默雪旋完成签到 ,获得积分10
29秒前
小羊完成签到,获得积分10
32秒前
32秒前
细心的语蓉完成签到,获得积分10
39秒前
lifenghou完成签到 ,获得积分10
40秒前
冷傲凝琴完成签到,获得积分10
41秒前
航行天下完成签到 ,获得积分10
49秒前
贪玩的万仇完成签到 ,获得积分10
58秒前
隐形曼青应助科研通管家采纳,获得10
1分钟前
眰恦完成签到 ,获得积分10
1分钟前
我要读博士完成签到 ,获得积分10
1分钟前
aowulan完成签到 ,获得积分10
1分钟前
sll完成签到 ,获得积分10
1分钟前
邱佩群完成签到 ,获得积分10
1分钟前
1分钟前
Yoli发布了新的文献求助30
1分钟前
粗犷的灵松完成签到 ,获得积分10
1分钟前
1分钟前
整齐豆芽完成签到 ,获得积分10
1分钟前
蛋妮完成签到 ,获得积分10
1分钟前
Moonchild完成签到 ,获得积分10
1分钟前
哈扎尔完成签到 ,获得积分10
1分钟前
科研狗的春天完成签到 ,获得积分10
1分钟前
1分钟前
小亮哈哈完成签到,获得积分10
1分钟前
笑点低的越泽完成签到,获得积分10
1分钟前
glomming完成签到 ,获得积分10
1分钟前
吉吉完成签到,获得积分10
1分钟前
licheng完成签到,获得积分10
1分钟前
凡凡完成签到,获得积分10
1分钟前
ZH完成签到 ,获得积分10
2分钟前
默默毛豆完成签到,获得积分10
2分钟前
gxzsdf完成签到 ,获得积分10
2分钟前
wjswift完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570320
求助须知:如何正确求助?哪些是违规求助? 3991993
关于积分的说明 12356573
捐赠科研通 3664572
什么是DOI,文献DOI怎么找? 2019606
邀请新用户注册赠送积分活动 1054071
科研通“疑难数据库(出版商)”最低求助积分说明 941622