已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Can Consumer-Posted Photos Serve as a Leading Indicator of Restaurant Survival? Evidence from Yelp

广告 预测能力 业务 比例(比率) 营销 地理 地图学 认识论 哲学
作者
Mengxia Zhang,Lan Luo
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (1): 25-50 被引量:122
标识
DOI:10.1287/mnsc.2022.4359
摘要

Despite the substantial economic impact of the restaurant industry, large-scale empirical research on restaurant survival has been sparse. We investigate whether consumer-posted photos can serve as a leading indicator of restaurant survival above and beyond reviews, firm characteristics, competitive landscape, and macroconditions. We employ machine learning techniques to extract features from 755,758 photos and 1,121,069 reviews posted on Yelp between 2004 and 2015 for 17,719 U.S. restaurants. We also collect data on restaurant characteristics (e.g., cuisine type, price level) and competitive landscape as well as entry and exit (if applicable) time from each restaurant’s Yelp/Facebook page, own website, or Google search engine. Using a predictive XGBoost algorithm, we find that consumer-posted photos are strong predictors of restaurant survival. Interestingly, the informativeness of photos (e.g., the proportion of food photos) relates more to restaurant survival than do photographic attributes (e.g., composition, brightness). Additionally, photos carry more predictive power for independent, young or mid-aged, and medium-priced restaurants. Assuming that restaurant owners possess no knowledge about future photos and reviews, photos can predict restaurant survival for up to three years, whereas reviews are only predictive for one year. We further employ causal forests to facilitate the interpretation of our predictive results. Among photo content variables, the proportion of food photos has the largest positive association with restaurant survival, followed by proportions of outside and interior photos. Among others, the proportion of photos with helpful votes also positively relates to restaurant survival. This paper was accepted by Juanjuan Zhang, marketing. Funding: The authors thankNvidia and Clarifai for supporting this research. Supplemental Material: The online appendix and data are available at https://doi.org/10.1287/mnsc.2022.4359 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syyw2021发布了新的文献求助10
2秒前
null应助JackWu采纳,获得10
3秒前
5秒前
8秒前
10秒前
10秒前
科研小巴发布了新的文献求助10
11秒前
小粉红wow~~~完成签到,获得积分10
11秒前
Ye发布了新的文献求助10
12秒前
zsmj23完成签到 ,获得积分0
12秒前
meeteryu完成签到,获得积分10
14秒前
15秒前
15秒前
蟒玉朝天完成签到 ,获得积分10
16秒前
檀江完成签到,获得积分10
17秒前
inRe完成签到,获得积分10
23秒前
25秒前
TiAmo完成签到 ,获得积分10
26秒前
sweetm完成签到,获得积分10
27秒前
善良的嫣完成签到 ,获得积分10
27秒前
橘子海完成签到 ,获得积分10
30秒前
成就书雪完成签到,获得积分0
30秒前
甜美的秋尽完成签到,获得积分10
30秒前
英俊的铭应助虾球采纳,获得30
30秒前
健忘捕完成签到 ,获得积分10
30秒前
Cosmos发布了新的文献求助10
32秒前
physic-完成签到,获得积分10
33秒前
gtgyh完成签到 ,获得积分10
37秒前
Wtony完成签到 ,获得积分10
38秒前
39秒前
高兴的丝完成签到 ,获得积分10
39秒前
40秒前
43秒前
inRe发布了新的文献求助10
44秒前
weibo完成签到,获得积分10
45秒前
46秒前
广州小肥羊完成签到 ,获得积分10
46秒前
47秒前
HAI发布了新的文献求助10
47秒前
世界需要我完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627676
求助须知:如何正确求助?哪些是违规求助? 4714380
关于积分的说明 14962946
捐赠科研通 4785322
什么是DOI,文献DOI怎么找? 2555072
邀请新用户注册赠送积分活动 1516447
关于科研通互助平台的介绍 1476841