亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Can Consumer-Posted Photos Serve as a Leading Indicator of Restaurant Survival? Evidence from Yelp

广告 预测能力 业务 比例(比率) 营销 地理 地图学 认识论 哲学
作者
Mengxia Zhang,Lan Luo
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (1): 25-50 被引量:122
标识
DOI:10.1287/mnsc.2022.4359
摘要

Despite the substantial economic impact of the restaurant industry, large-scale empirical research on restaurant survival has been sparse. We investigate whether consumer-posted photos can serve as a leading indicator of restaurant survival above and beyond reviews, firm characteristics, competitive landscape, and macroconditions. We employ machine learning techniques to extract features from 755,758 photos and 1,121,069 reviews posted on Yelp between 2004 and 2015 for 17,719 U.S. restaurants. We also collect data on restaurant characteristics (e.g., cuisine type, price level) and competitive landscape as well as entry and exit (if applicable) time from each restaurant’s Yelp/Facebook page, own website, or Google search engine. Using a predictive XGBoost algorithm, we find that consumer-posted photos are strong predictors of restaurant survival. Interestingly, the informativeness of photos (e.g., the proportion of food photos) relates more to restaurant survival than do photographic attributes (e.g., composition, brightness). Additionally, photos carry more predictive power for independent, young or mid-aged, and medium-priced restaurants. Assuming that restaurant owners possess no knowledge about future photos and reviews, photos can predict restaurant survival for up to three years, whereas reviews are only predictive for one year. We further employ causal forests to facilitate the interpretation of our predictive results. Among photo content variables, the proportion of food photos has the largest positive association with restaurant survival, followed by proportions of outside and interior photos. Among others, the proportion of photos with helpful votes also positively relates to restaurant survival. This paper was accepted by Juanjuan Zhang, marketing. Funding: The authors thankNvidia and Clarifai for supporting this research. Supplemental Material: The online appendix and data are available at https://doi.org/10.1287/mnsc.2022.4359 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
廖梦雨完成签到 ,获得积分10
5秒前
cC发布了新的文献求助10
7秒前
8秒前
共享精神应助包容山灵采纳,获得10
11秒前
科研通AI2S应助混子采纳,获得10
12秒前
MJS发布了新的文献求助10
13秒前
Coai517完成签到 ,获得积分10
14秒前
冥灵花火完成签到,获得积分10
19秒前
MJS完成签到,获得积分10
19秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得10
37秒前
科研通AI6应助科研通管家采纳,获得10
37秒前
51秒前
58秒前
59秒前
念一留下了新的社区评论
1分钟前
包容山灵发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
白白白发布了新的文献求助10
1分钟前
从来都不会放弃zr完成签到,获得积分10
1分钟前
包容山灵完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
念一留下了新的社区评论
1分钟前
1分钟前
失眠安波发布了新的文献求助10
1分钟前
cc完成签到,获得积分10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
如意慕蕊发布了新的文献求助10
2分钟前
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
Orange应助张家宁采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755107
求助须知:如何正确求助?哪些是违规求助? 5491455
关于积分的说明 15380898
捐赠科研通 4893395
什么是DOI,文献DOI怎么找? 2632015
邀请新用户注册赠送积分活动 1579859
关于科研通互助平台的介绍 1535696