亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Can Consumer-Posted Photos Serve as a Leading Indicator of Restaurant Survival? Evidence from Yelp

广告 预测能力 业务 比例(比率) 营销 地理 地图学 认识论 哲学
作者
Mengxia Zhang,Lan Luo
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (1): 25-50 被引量:122
标识
DOI:10.1287/mnsc.2022.4359
摘要

Despite the substantial economic impact of the restaurant industry, large-scale empirical research on restaurant survival has been sparse. We investigate whether consumer-posted photos can serve as a leading indicator of restaurant survival above and beyond reviews, firm characteristics, competitive landscape, and macroconditions. We employ machine learning techniques to extract features from 755,758 photos and 1,121,069 reviews posted on Yelp between 2004 and 2015 for 17,719 U.S. restaurants. We also collect data on restaurant characteristics (e.g., cuisine type, price level) and competitive landscape as well as entry and exit (if applicable) time from each restaurant’s Yelp/Facebook page, own website, or Google search engine. Using a predictive XGBoost algorithm, we find that consumer-posted photos are strong predictors of restaurant survival. Interestingly, the informativeness of photos (e.g., the proportion of food photos) relates more to restaurant survival than do photographic attributes (e.g., composition, brightness). Additionally, photos carry more predictive power for independent, young or mid-aged, and medium-priced restaurants. Assuming that restaurant owners possess no knowledge about future photos and reviews, photos can predict restaurant survival for up to three years, whereas reviews are only predictive for one year. We further employ causal forests to facilitate the interpretation of our predictive results. Among photo content variables, the proportion of food photos has the largest positive association with restaurant survival, followed by proportions of outside and interior photos. Among others, the proportion of photos with helpful votes also positively relates to restaurant survival. This paper was accepted by Juanjuan Zhang, marketing. Funding: The authors thankNvidia and Clarifai for supporting this research. Supplemental Material: The online appendix and data are available at https://doi.org/10.1287/mnsc.2022.4359 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho关闭了zho文献求助
1秒前
aobadong完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
6秒前
8秒前
10秒前
爆米花应助pups采纳,获得10
27秒前
量子星尘发布了新的文献求助10
32秒前
yb完成签到,获得积分10
40秒前
甜青提完成签到,获得积分10
46秒前
weibo完成签到,获得积分10
54秒前
56秒前
wang发布了新的文献求助10
1分钟前
1分钟前
风中的雪发布了新的文献求助10
1分钟前
cxm发布了新的文献求助10
1分钟前
风中的雪完成签到,获得积分10
1分钟前
凡人完成签到 ,获得积分10
1分钟前
1分钟前
will完成签到,获得积分10
2分钟前
星辰大海应助沫雨采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
乐乐应助andrele采纳,获得10
2分钟前
科研通AI6应助zznzn采纳,获得10
2分钟前
2分钟前
2分钟前
沫雨发布了新的文献求助10
2分钟前
史前巨怪完成签到,获得积分0
2分钟前
2分钟前
落沧发布了新的文献求助10
2分钟前
晚街听风完成签到 ,获得积分10
3分钟前
zho发布了新的文献求助10
3分钟前
黄青青完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671189
求助须知:如何正确求助?哪些是违规求助? 4911434
关于积分的说明 15134190
捐赠科研通 4829942
什么是DOI,文献DOI怎么找? 2586543
邀请新用户注册赠送积分活动 1540204
关于科研通互助平台的介绍 1498392