Can Consumer-Posted Photos Serve as a Leading Indicator of Restaurant Survival? Evidence from Yelp

广告 预测能力 业务 比例(比率) 营销 地理 地图学 认识论 哲学
作者
Mengxia Zhang,Lan Luo
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (1): 25-50 被引量:121
标识
DOI:10.1287/mnsc.2022.4359
摘要

Despite the substantial economic impact of the restaurant industry, large-scale empirical research on restaurant survival has been sparse. We investigate whether consumer-posted photos can serve as a leading indicator of restaurant survival above and beyond reviews, firm characteristics, competitive landscape, and macroconditions. We employ machine learning techniques to extract features from 755,758 photos and 1,121,069 reviews posted on Yelp between 2004 and 2015 for 17,719 U.S. restaurants. We also collect data on restaurant characteristics (e.g., cuisine type, price level) and competitive landscape as well as entry and exit (if applicable) time from each restaurant’s Yelp/Facebook page, own website, or Google search engine. Using a predictive XGBoost algorithm, we find that consumer-posted photos are strong predictors of restaurant survival. Interestingly, the informativeness of photos (e.g., the proportion of food photos) relates more to restaurant survival than do photographic attributes (e.g., composition, brightness). Additionally, photos carry more predictive power for independent, young or mid-aged, and medium-priced restaurants. Assuming that restaurant owners possess no knowledge about future photos and reviews, photos can predict restaurant survival for up to three years, whereas reviews are only predictive for one year. We further employ causal forests to facilitate the interpretation of our predictive results. Among photo content variables, the proportion of food photos has the largest positive association with restaurant survival, followed by proportions of outside and interior photos. Among others, the proportion of photos with helpful votes also positively relates to restaurant survival. This paper was accepted by Juanjuan Zhang, marketing. Funding: The authors thankNvidia and Clarifai for supporting this research. Supplemental Material: The online appendix and data are available at https://doi.org/10.1287/mnsc.2022.4359 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助老肖采纳,获得10
刚刚
1秒前
杨宝仪发布了新的文献求助10
1秒前
hu发布了新的文献求助10
2秒前
无限的小懒虫完成签到,获得积分10
2秒前
图图超人发布了新的文献求助10
2秒前
lucky完成签到,获得积分10
3秒前
小蓝发布了新的文献求助10
3秒前
华仔应助YNHN采纳,获得10
3秒前
4秒前
科研通AI6应助鱼y采纳,获得10
4秒前
英姑应助笨笨的鬼神采纳,获得10
4秒前
sunny完成签到,获得积分10
5秒前
5秒前
科研通AI6应助smile采纳,获得10
5秒前
科研顺利发布了新的文献求助10
5秒前
toot完成签到,获得积分10
6秒前
6秒前
香蕉觅云应助ccone采纳,获得10
7秒前
orixero应助小章采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
乘风完成签到,获得积分10
8秒前
海棠完成签到 ,获得积分10
9秒前
10秒前
hu完成签到,获得积分10
10秒前
10秒前
小1完成签到,获得积分10
11秒前
镓氧锌钇铀应助yy采纳,获得10
11秒前
11秒前
友好的宛凝完成签到,获得积分10
11秒前
江流儿完成签到,获得积分10
11秒前
英俊的铭应助勤恳醉柳采纳,获得10
12秒前
13秒前
载荷发布了新的文献求助10
13秒前
15秒前
15秒前
阿玺发布了新的文献求助10
16秒前
打打应助酷酷小天鹅采纳,获得10
16秒前
玩命的凝天完成签到,获得积分10
16秒前
palace发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508259
求助须知:如何正确求助?哪些是违规求助? 4603561
关于积分的说明 14486351
捐赠科研通 4537753
什么是DOI,文献DOI怎么找? 2486753
邀请新用户注册赠送积分活动 1469227
关于科研通互助平台的介绍 1441618