Can Consumer-Posted Photos Serve as a Leading Indicator of Restaurant Survival? Evidence from Yelp

广告 预测能力 业务 比例(比率) 营销 地理 地图学 认识论 哲学
作者
Mengxia Zhang,Lan Luo
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (1): 25-50 被引量:122
标识
DOI:10.1287/mnsc.2022.4359
摘要

Despite the substantial economic impact of the restaurant industry, large-scale empirical research on restaurant survival has been sparse. We investigate whether consumer-posted photos can serve as a leading indicator of restaurant survival above and beyond reviews, firm characteristics, competitive landscape, and macroconditions. We employ machine learning techniques to extract features from 755,758 photos and 1,121,069 reviews posted on Yelp between 2004 and 2015 for 17,719 U.S. restaurants. We also collect data on restaurant characteristics (e.g., cuisine type, price level) and competitive landscape as well as entry and exit (if applicable) time from each restaurant’s Yelp/Facebook page, own website, or Google search engine. Using a predictive XGBoost algorithm, we find that consumer-posted photos are strong predictors of restaurant survival. Interestingly, the informativeness of photos (e.g., the proportion of food photos) relates more to restaurant survival than do photographic attributes (e.g., composition, brightness). Additionally, photos carry more predictive power for independent, young or mid-aged, and medium-priced restaurants. Assuming that restaurant owners possess no knowledge about future photos and reviews, photos can predict restaurant survival for up to three years, whereas reviews are only predictive for one year. We further employ causal forests to facilitate the interpretation of our predictive results. Among photo content variables, the proportion of food photos has the largest positive association with restaurant survival, followed by proportions of outside and interior photos. Among others, the proportion of photos with helpful votes also positively relates to restaurant survival. This paper was accepted by Juanjuan Zhang, marketing. Funding: The authors thankNvidia and Clarifai for supporting this research. Supplemental Material: The online appendix and data are available at https://doi.org/10.1287/mnsc.2022.4359 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
赖建琛完成签到 ,获得积分0
刚刚
善学以致用应助gdh采纳,获得10
刚刚
刚刚
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
852应助科研通管家采纳,获得10
1秒前
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
Twonej应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
1秒前
恋如雪止应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
2秒前
2秒前
耍酷的卿应助贞花66采纳,获得10
2秒前
一碗小米饭完成签到,获得积分10
2秒前
Lydia发布了新的文献求助10
2秒前
情怀应助老实的山菡采纳,获得10
2秒前
GingerF应助寻寻采纳,获得50
3秒前
lzy完成签到 ,获得积分10
4秒前
田鑫发布了新的文献求助10
4秒前
4秒前
fann发布了新的文献求助10
4秒前
JamesPei应助bcc采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770469
求助须知:如何正确求助?哪些是违规求助? 5585240
关于积分的说明 15424252
捐赠科研通 4904062
什么是DOI,文献DOI怎么找? 2638468
邀请新用户注册赠送积分活动 1586331
关于科研通互助平台的介绍 1541406