Spectral clustering with anchor graph based on set-to-set distances for large-scale hyperspectral images

聚类分析 高光谱成像 模式识别(心理学) 光谱聚类 图形 计算机科学 加权 相关聚类 集合(抽象数据类型) 人工智能 数学 比例(比率) 数据挖掘 组合数学 地理 放射科 医学 程序设计语言 地图学
作者
Yao Qin,Sinong Quan,Chong-Yang Wei,Weiping Ni,Kun Li,Xianlin Dong,Yuanxin Ye
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:43 (7): 2438-2460 被引量:2
标识
DOI:10.1080/01431161.2022.2061317
摘要

Since labelled samples of hyperspectral images (HSIs) may be unavailable in practical remote sensing applications, large-scale HSI clustering is very important. Due to the huge amount of data brought by the rich spectral and spatial information in large-scale HSIs, HSI clustering is still a challenging task. Among the methods designed for large-scale HSIs clustering, the anchor graph-based methods simultaneously inherit the merits of graph-based clustering and reduce the computational complexity by introducing anchor samples to graph construction. However, the affinity matrix computed by inaccurate distances between anchor samples and other HSI samples can hardly obtain satisfactory clustering performance. To solve this problem, we propose a novel approach for large-scale HSI clustering, namely, spectral clustering with anchor graph based on set-to-set distances (SCAG-SSD) derived from local covariance matrix representation (LCMR). First, superpixels and LCMR features of HSI are obtained via the entropy rate superpixel algorithm and maximum noise fraction, respectively. Second, pure and anomalous samples of each superpixel are distinguished via the distances of LCMR features, and then anchor samples are selected via statistics of the distances between pure samples in each superpixel. In this way, selected anchor samples are representative enough to link all the HSI samples. Third, pure samples in each superpixel, anomalous and anchor samples with their corresponding nearest neighbouring samples are all regarded as different sets. The set-to-set distance is achieved by weighting the LCMR-based distances between samples of two sets. Finally, fast anchor graph clustering is conducted based on set-to-set distances to obtain final clustering maps. Extensive experiments conducted on three publicly available benchmark HSIs demonstrate that the proposed method achieves state-of-the-art clustering accuracy with comparable efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
东北发布了新的文献求助10
2秒前
世说新语关注了科研通微信公众号
3秒前
3秒前
乐乐应助都是采纳,获得10
3秒前
Corn_Dog完成签到 ,获得积分10
5秒前
青春旅社发布了新的文献求助10
8秒前
8秒前
无花果应助西西采纳,获得10
9秒前
美丽电源发布了新的文献求助10
10秒前
SciGPT应助传统的钧采纳,获得10
10秒前
芜湖发布了新的文献求助10
11秒前
穆紫应助东北采纳,获得10
13秒前
Singularity应助少年采纳,获得10
13秒前
13秒前
15秒前
15秒前
hitagi发布了新的文献求助10
15秒前
16秒前
weilao发布了新的文献求助10
16秒前
666完成签到,获得积分10
17秒前
自由的飞翔完成签到,获得积分20
17秒前
17秒前
20秒前
20秒前
薛wen晶完成签到 ,获得积分10
20秒前
taizaizi发布了新的文献求助10
21秒前
666发布了新的文献求助10
21秒前
小糯米发布了新的文献求助10
22秒前
22秒前
汪洋浮萍一道开完成签到,获得积分10
22秒前
22秒前
科研通AI2S应助美丽电源采纳,获得10
22秒前
坚定幻嫣关注了科研通微信公众号
23秒前
传统的钧发布了新的文献求助10
25秒前
充电宝应助科研通管家采纳,获得30
26秒前
斯文败类应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得30
26秒前
Akim应助科研通管家采纳,获得10
26秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124803
求助须知:如何正确求助?哪些是违规求助? 2775148
关于积分的说明 7725553
捐赠科研通 2430633
什么是DOI,文献DOI怎么找? 1291291
科研通“疑难数据库(出版商)”最低求助积分说明 622121
版权声明 600328