Protein structure prediction with recurrent neural network and convolutional neural network: a case study

卷积神经网络 人工神经网络 计算机科学 人工智能
作者
Ritu Karwasra,Kushagra Khanna,Kapil Suchal,Ajay Sharma,Surender Singh
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 211-229
标识
DOI:10.1016/b978-0-443-22299-3.00013-x
摘要

Bioinformatics comprises the computer system's technology for numerous purposes, including storage, retrieval, manipulation, prediction, and distribution of information attributed to biological macromolecules such as deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and proteins. In the bioinformatics category, protein structure prediction (PSP) depends on the fundamental protein structure divided into four main types: primary, secondary, tertiary, and quaternary. The utmost focus of bioinformatics is not just accuracy on prediction tasks but the interpretation of the underlying biological processes. The biggest challenge in computational biology is understanding the intricate reliance between protein structure and sequence. Deep learning (DL), with the aid of accessible tools, data and impactful computational resources, has created a revolution in numerous fields, including PSP. In recent years, various DL and machine learning methods have been employed for PSP at various levels of detail. Convolutional neural networks and recurrent neural networks (RNNs) have emerged as popular DL approaches. In this chapter, we explore the evolution of PSP from simple statistical methods from the past to the highly intensive and sophisticated computational DL algorithms of the last few decades. We also discuss a few case studies, along with the challenges to aid researchers in predicting the protein structure with these DL algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助温暖富采纳,获得10
刚刚
刚刚
文艺的半双完成签到,获得积分10
刚刚
今后应助小熊采纳,获得10
刚刚
曾经凝琴关注了科研通微信公众号
刚刚
ding应助啊擦删除采纳,获得10
1秒前
0℃冰封发布了新的文献求助10
2秒前
qingsi完成签到 ,获得积分10
2秒前
2秒前
满意剑成完成签到,获得积分10
3秒前
3秒前
kryptonite发布了新的文献求助10
4秒前
4秒前
zn关注了科研通微信公众号
4秒前
紧张的幼菱完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助1235采纳,获得10
6秒前
粗暴的鱼完成签到,获得积分10
6秒前
7秒前
xlz发布了新的文献求助10
7秒前
子车茗应助tommy999采纳,获得30
8秒前
abc97完成签到,获得积分10
9秒前
9秒前
耶斯发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
中和皇极应助傅夜山采纳,获得10
11秒前
科研通AI6应助傅夜山采纳,获得10
12秒前
12秒前
啊擦删除发布了新的文献求助10
12秒前
12秒前
12秒前
CodeCraft应助kwi采纳,获得10
13秒前
BowieHuang应助rnanoda采纳,获得10
13秒前
箱子发布了新的文献求助10
14秒前
男研选手发布了新的文献求助10
15秒前
15秒前
15秒前
李可汗发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589279
求助须知:如何正确求助?哪些是违规求助? 4674065
关于积分的说明 14791491
捐赠科研通 4628070
什么是DOI,文献DOI怎么找? 2532220
邀请新用户注册赠送积分活动 1500838
关于科研通互助平台的介绍 1468437