已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of soil organic carbon using machine learning techniques and geospatial data for sustainable agriculture

地理空间分析 土壤碳 农业 环境科学 可持续农业 碳纤维 有机农业 总有机碳 计算机科学 遥感 环境化学 土壤科学 土壤水分 地理 化学 考古 算法 复合数
作者
S. G. Mundada,Pooja Jain,Nirmal Kumar
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-14
标识
DOI:10.3233/jifs-240493
摘要

Sustainable agriculture revolves around soil organic carbon (SOC), which is essential for numerous soil functions and ecological attributes. Farmers are interested in conserving and adding additional soil organic carbon to certain fields in order to improve soil health and productivity. The relationship between soil and environment that has been discovered and standardized throughout time has enhanced the progress of digital soil-mapping techniques; therefore, a variety of machine learning techniques are used to predict soil properties. Studies are thriving at how effectively each machine learning method maps and predicts SOC, especially at high spatial resolutions. To predict SOC of soil at a 30 m resolution, four machine learning models—Random Forest, Support Vector Machine, Adaptive Boosting, and k-Nearest Neighbour were used. For model evaluation, two error metrics, namely R2 and RMSE have been used. The findings demonstrated that the calibration and validation sets’ descriptive statistics sufficiently resembled the entire set of data. The range of the calculated SOC content was 0.06 to 1.76 %. According to the findings of the study, Random Forest showed good results for both cases, i.e. evaluation using cross validation and without cross validation. Using cross validation, RF confirmed highest R2 as 0.5278 and lowest RMSE as 0.1683 for calibration dataset while without cross validation it showed R2 as 0.8612 and lowest RMSE as 0.0912 for calibration dataset. The generated soil maps will help farmers adopt precise knowledge for decisions that will increase farm productivity and provide food security through the sustainable use of nutrients and the agricultural environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
lulu完成签到 ,获得积分10
1秒前
3秒前
温暖白容发布了新的文献求助10
3秒前
xue给xue的求助进行了留言
4秒前
March完成签到,获得积分10
7秒前
7秒前
虚幻采枫完成签到,获得积分10
8秒前
9秒前
9秒前
JamesPei应助LL采纳,获得10
9秒前
香蕉觅云应助小白果果采纳,获得10
10秒前
潇洒夏山发布了新的文献求助10
11秒前
生动越彬完成签到,获得积分20
13秒前
YOGA1115发布了新的文献求助10
14秒前
凉薄少年应助www采纳,获得10
14秒前
生动越彬发布了新的文献求助10
16秒前
科研通AI2S应助Conner采纳,获得10
17秒前
欸嘿发布了新的文献求助10
19秒前
怕孤独的如松完成签到,获得积分10
19秒前
19秒前
20秒前
YOGA1115完成签到,获得积分20
21秒前
22秒前
LL发布了新的文献求助10
24秒前
富贵儿完成签到 ,获得积分10
25秒前
28秒前
劳永杰发布了新的文献求助10
28秒前
32秒前
wenwenerya发布了新的文献求助38
32秒前
Bonnie发布了新的文献求助10
32秒前
小白果果发布了新的文献求助10
33秒前
大意的绿蓉完成签到,获得积分10
33秒前
香蕉觅云应助自然剑采纳,获得10
35秒前
科研通AI5应助XLL小绿绿采纳,获得80
37秒前
Robert_g完成签到,获得积分10
39秒前
活泼冬天完成签到,获得积分10
43秒前
5430完成签到,获得积分10
43秒前
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968054
求助须知:如何正确求助?哪些是违规求助? 3513070
关于积分的说明 11166367
捐赠科研通 3248263
什么是DOI,文献DOI怎么找? 1794174
邀请新用户注册赠送积分活动 874892
科研通“疑难数据库(出版商)”最低求助积分说明 804629