已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of soil organic carbon using machine learning techniques and geospatial data for sustainable agriculture

地理空间分析 土壤碳 农业 环境科学 可持续农业 碳纤维 有机农业 总有机碳 计算机科学 遥感 环境化学 土壤科学 土壤水分 地理 化学 考古 算法 复合数
作者
S. G. Mundada,Pooja Jain,Nirmal Kumar
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-14
标识
DOI:10.3233/jifs-240493
摘要

Sustainable agriculture revolves around soil organic carbon (SOC), which is essential for numerous soil functions and ecological attributes. Farmers are interested in conserving and adding additional soil organic carbon to certain fields in order to improve soil health and productivity. The relationship between soil and environment that has been discovered and standardized throughout time has enhanced the progress of digital soil-mapping techniques; therefore, a variety of machine learning techniques are used to predict soil properties. Studies are thriving at how effectively each machine learning method maps and predicts SOC, especially at high spatial resolutions. To predict SOC of soil at a 30 m resolution, four machine learning models—Random Forest, Support Vector Machine, Adaptive Boosting, and k-Nearest Neighbour were used. For model evaluation, two error metrics, namely R2 and RMSE have been used. The findings demonstrated that the calibration and validation sets’ descriptive statistics sufficiently resembled the entire set of data. The range of the calculated SOC content was 0.06 to 1.76 %. According to the findings of the study, Random Forest showed good results for both cases, i.e. evaluation using cross validation and without cross validation. Using cross validation, RF confirmed highest R2 as 0.5278 and lowest RMSE as 0.1683 for calibration dataset while without cross validation it showed R2 as 0.8612 and lowest RMSE as 0.0912 for calibration dataset. The generated soil maps will help farmers adopt precise knowledge for decisions that will increase farm productivity and provide food security through the sustainable use of nutrients and the agricultural environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jane完成签到 ,获得积分10
1秒前
shixinran完成签到,获得积分10
1秒前
Aimee发布了新的文献求助10
2秒前
Beton_X发布了新的文献求助30
5秒前
彭于晏应助EadonChen采纳,获得10
6秒前
smart完成签到,获得积分10
7秒前
打打应助h2o采纳,获得10
8秒前
科研通AI6.1应助虚心飞鸟采纳,获得10
8秒前
李健的小迷弟应助向阳采纳,获得10
9秒前
褚幻香发布了新的文献求助10
12秒前
范范完成签到,获得积分20
13秒前
16秒前
Yusra完成签到 ,获得积分10
17秒前
不懈奋进应助LO7pM2采纳,获得30
18秒前
19秒前
蛋挞完成签到 ,获得积分10
19秒前
向阳完成签到,获得积分10
19秒前
455完成签到,获得积分10
20秒前
向阳发布了新的文献求助10
23秒前
Akim应助柚子采纳,获得10
24秒前
大模型应助PAPA采纳,获得10
25秒前
26秒前
Hello应助科研通管家采纳,获得10
27秒前
Hilda007应助科研通管家采纳,获得10
27秒前
Hello应助科研通管家采纳,获得10
27秒前
YifanWang应助科研通管家采纳,获得10
27秒前
Hilda007应助科研通管家采纳,获得10
27秒前
CCCheny应助科研通管家采纳,获得10
27秒前
YifanWang应助科研通管家采纳,获得10
27秒前
慕青应助科研通管家采纳,获得10
27秒前
28秒前
CCCheny应助科研通管家采纳,获得10
28秒前
慕青应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
深情安青应助科研通管家采纳,获得10
28秒前
28秒前
隐形曼青应助科研通管家采纳,获得100
28秒前
深情安青应助科研通管家采纳,获得10
28秒前
Hello应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938