Prediction of soil organic carbon using machine learning techniques and geospatial data for sustainable agriculture

地理空间分析 土壤碳 农业 环境科学 可持续农业 碳纤维 有机农业 总有机碳 计算机科学 遥感 环境化学 土壤科学 土壤水分 地理 化学 考古 算法 复合数
作者
S. G. Mundada,Pooja Jain,Nirmal Kumar
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-14
标识
DOI:10.3233/jifs-240493
摘要

Sustainable agriculture revolves around soil organic carbon (SOC), which is essential for numerous soil functions and ecological attributes. Farmers are interested in conserving and adding additional soil organic carbon to certain fields in order to improve soil health and productivity. The relationship between soil and environment that has been discovered and standardized throughout time has enhanced the progress of digital soil-mapping techniques; therefore, a variety of machine learning techniques are used to predict soil properties. Studies are thriving at how effectively each machine learning method maps and predicts SOC, especially at high spatial resolutions. To predict SOC of soil at a 30 m resolution, four machine learning models—Random Forest, Support Vector Machine, Adaptive Boosting, and k-Nearest Neighbour were used. For model evaluation, two error metrics, namely R2 and RMSE have been used. The findings demonstrated that the calibration and validation sets’ descriptive statistics sufficiently resembled the entire set of data. The range of the calculated SOC content was 0.06 to 1.76 %. According to the findings of the study, Random Forest showed good results for both cases, i.e. evaluation using cross validation and without cross validation. Using cross validation, RF confirmed highest R2 as 0.5278 and lowest RMSE as 0.1683 for calibration dataset while without cross validation it showed R2 as 0.8612 and lowest RMSE as 0.0912 for calibration dataset. The generated soil maps will help farmers adopt precise knowledge for decisions that will increase farm productivity and provide food security through the sustainable use of nutrients and the agricultural environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
3秒前
4秒前
小苏发布了新的文献求助10
4秒前
何小姀发布了新的文献求助10
4秒前
爱静静应助mmyhn采纳,获得10
5秒前
浮生发布了新的文献求助30
6秒前
娇气的春天完成签到 ,获得积分10
6秒前
yingxutravel发布了新的文献求助10
6秒前
7秒前
wjw完成签到,获得积分10
8秒前
8秒前
心想事成发布了新的文献求助10
9秒前
necal发布了新的文献求助20
10秒前
Hello应助忐忑的石头采纳,获得10
12秒前
Georges-09完成签到,获得积分10
13秒前
儒雅八宝粥关注了科研通微信公众号
13秒前
WELXCNK完成签到,获得积分10
13秒前
科研通AI2S应助可可杨采纳,获得10
13秒前
lee完成签到,获得积分10
14秒前
科研yu完成签到,获得积分10
15秒前
yingxutravel完成签到,获得积分10
16秒前
爱静静应助蓬蒿人采纳,获得10
17秒前
17秒前
19秒前
如意的小海豚完成签到,获得积分10
19秒前
lizhuanggggg完成签到,获得积分10
20秒前
Wanyeweiyu完成签到,获得积分10
20秒前
黑苹果完成签到,获得积分10
20秒前
景茶茶完成签到 ,获得积分10
21秒前
ru完成签到 ,获得积分10
22秒前
22秒前
23秒前
23秒前
23秒前
23秒前
24秒前
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242146
求助须知:如何正确求助?哪些是违规求助? 2886591
关于积分的说明 8243909
捐赠科研通 2555131
什么是DOI,文献DOI怎么找? 1383250
科研通“疑难数据库(出版商)”最低求助积分说明 649672
邀请新用户注册赠送积分活动 625469