Trajectory Planning and Singularity Avoidance Algorithm for Robotic Arm Obstacle Avoidance Based on an Improved Fast Marching Tree

避障 运动规划 奇点 计算机科学 快速行进算法 弹道 稳健性(进化) 计算机视觉 人工智能 算法 机器人 数学优化 数学 移动机器人 几何学 基因 物理 生物化学 天文 化学
作者
Baoju Wu,Xiaohui Wu,Nanmu Hui,Xiaoxu Han
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (8): 3241-3241
标识
DOI:10.3390/app14083241
摘要

The quest for efficient and safe trajectory planning in robotic manipulation poses significant challenges, particularly in complex obstacle environments where the risk of encountering singularities and obstacles is high. Addressing this critical issue, our study presents a novel enhancement of the Fast Marching Tree (FMT) algorithm, ingeniously designed to navigate the complex terrain of Cartesian space with an unprecedented level of finesse. At the heart of our approach lies a sophisticated two-stage path point sampling strategy, ingeniously coupled with a singularity avoidance mechanism that leverages geometric perception to assess and mitigate the risk of encountering problematic configurations. This innovative method not only facilitates seamless obstacle navigation but also adeptly circumvents the perilous zones of singularity, ensuring a smooth and uninterrupted path for the robotic arm. To further refine the trajectory, we incorporate a quasi-uniform cubic B-spline curve, optimizing the path for both efficiency and smoothness. Our comprehensive simulation experiments underscore the superiority of our algorithm, showcasing its ability to consistently achieve shorter, more efficient paths while steadfastly avoiding obstacles and singularities. The practical applicability of our method is further corroborated through successful implementation in real-world robotic arm trajectory planning scenarios, highlighting its potential to revolutionize the field with its robustness and adaptability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
怕孤单的安蕾完成签到,获得积分10
3秒前
3秒前
如常完成签到,获得积分10
4秒前
轻松绮露发布了新的文献求助10
4秒前
Amberwdd发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
7秒前
starlx0813发布了新的文献求助10
7秒前
7秒前
qqqq发布了新的文献求助10
7秒前
7秒前
7秒前
吴龙完成签到,获得积分10
7秒前
8秒前
今后应助缓慢的皮卡丘采纳,获得10
8秒前
李润春完成签到,获得积分10
9秒前
9秒前
zz完成签到,获得积分20
9秒前
9秒前
丁丁丁完成签到,获得积分10
10秒前
张11发布了新的文献求助10
10秒前
木火灰发布了新的文献求助10
10秒前
Z赵完成签到 ,获得积分10
10秒前
李健应助dmj采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
JamesPei应助冯娇娇采纳,获得10
11秒前
cccc发布了新的文献求助10
12秒前
Kelevator完成签到,获得积分10
12秒前
12秒前
易yi发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
李爱国应助酒洲采纳,获得10
14秒前
大个应助zz采纳,获得10
14秒前
15秒前
黄晓荷发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133