LSKF-YOLO: Large selective kernel feature fusion network for power tower detection in high-resolution satellite remote sensing images

遥感 计算机科学 核(代数) 卫星 高分辨率 目标检测 特征(语言学) 人工智能 传感器融合 计算机视觉 特征提取 模式识别(心理学) 地质学 工程类 语言学 哲学 数学 组合数学 航空航天工程
作者
Chaojun Shi,Xian Zheng,Zhenbing Zhao,Ke Zhang,Zibo Su,Qiaochu Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16
标识
DOI:10.1109/tgrs.2024.3389056
摘要

With the rapid development of high-resolution satellite remote sensing observation technology, power tower detection based on satellite remote sensing images has become a key research focus for power intelligent inspection. However, the performance of power tower detection in satellite remote sensing images needs improvement due to complex back-grounds, small and non-uniform target sizes. To address this, this paper first constructs a multi-scene high-resolution satellite remote sensing power tower dataset, and then proposes the LSKF-YOLO network for high-resolution satellite remote sensing images. This network primarily consists of a large spatial kernel selective attention fusion module and a multi-scale feature alignment fusion structure. The large spatial selective kernel mechanism is improved by using the attentional feature fusion module, provides richer feature information for accurately locating the position of the power tower. The multi-scale feature alignment fusion structure effectively utilizes low-level semantic information, mitigates feature ambiguity in deeper network layers, and enables multi-scale feature fusion of power towers within complex backgrounds. Additionally, the introduction of MPDIoU enhances CIoU, further improving the model's performance. The results demonstrate that the F1 score and mAP0.5 of the LSKF-YOLO network reach 0.764 and 77.47%, respectively. Compared with other deep learning-based satellite remote sensing power tower inspection methods, the LSKF-YOLO network significantly enhances detection accuracy and provides crucial technical support for intelligent inspection of power lines via satellite remote sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩云追月发布了新的文献求助10
1秒前
zero发布了新的文献求助10
1秒前
1秒前
2秒前
4秒前
风趣的茹嫣完成签到 ,获得积分10
4秒前
BZPL发布了新的文献求助10
4秒前
yuan发布了新的文献求助30
4秒前
5秒前
媛媛完成签到,获得积分20
5秒前
5秒前
6秒前
7秒前
8秒前
9秒前
lglalex发布了新的文献求助10
10秒前
swing完成签到,获得积分10
11秒前
飞快的尔容完成签到,获得积分10
11秒前
喜喜发布了新的文献求助10
11秒前
小二郎应助down采纳,获得10
11秒前
姆姆没买发布了新的文献求助10
11秒前
乐观碧曼发布了新的文献求助10
11秒前
小马甲应助梁子奥里给采纳,获得10
12秒前
pqy发布了新的文献求助10
13秒前
16秒前
媛媛发布了新的文献求助10
16秒前
dttt发布了新的文献求助10
16秒前
徐瑶瑶完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
王者归来完成签到,获得积分10
19秒前
SaberLee完成签到,获得积分10
20秒前
lglalex完成签到,获得积分10
21秒前
21秒前
akber123完成签到,获得积分10
21秒前
22秒前
王者归来发布了新的文献求助10
22秒前
22秒前
WittingGU完成签到,获得积分10
22秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434032
求助须知:如何正确求助?哪些是违规求助? 3031223
关于积分的说明 8941345
捐赠科研通 2719217
什么是DOI,文献DOI怎么找? 1491694
科研通“疑难数据库(出版商)”最低求助积分说明 689392
邀请新用户注册赠送积分活动 685523