A survey of label-noise deep learning for medical image analysis

计算机科学 噪音(视频) 深度学习 一致性(知识库) 人工智能 机器学习 一般化 范围(计算机科学) 领域(数学分析) 可靠性(半导体) 数据科学 医学影像学 比例(比率) 质量(理念) 图像(数学) 数学 数学分析 功率(物理) 物理 量子力学 程序设计语言 哲学 认识论
作者
Jialin Shi,Kailai Zhang,Chenyi Guo,Youquan Yang,Yali Xu,Ji Wu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:95: 103166-103166 被引量:1
标识
DOI:10.1016/j.media.2024.103166
摘要

Several factors are associated with the success of deep learning. One of the most important reasons is the availability of large-scale datasets with clean annotations. However, obtaining datasets with accurate labels in the medical imaging domain is challenging. The reliability and consistency of medical labeling are some of these issues, and low-quality annotations with label noise usually exist. Because noisy labels reduce the generalization performance of deep neural networks, learning with noisy labels is becoming an essential task in medical image analysis. Literature on this topic has expanded in terms of volume and scope. However, no recent surveys have collected and organized this knowledge, impeding the ability of researchers and practitioners to utilize it. In this work, we presented an up-to-date survey of label-noise learning for medical image domain. We reviewed extensive literature, illustrated some typical methods, and showed unified taxonomies in terms of methodological differences. Subsequently, we conducted the methodological comparison and demonstrated the corresponding advantages and disadvantages. Finally, we discussed new research directions based on the characteristics of medical images. Our survey aims to provide researchers and practitioners with a solid understanding of existing medical label-noise learning, such as the main algorithms developed over the past few years, which could help them investigate new methods to combat with the negative effects of label noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风吹北巷发布了新的文献求助10
1秒前
简单关注了科研通微信公众号
1秒前
1秒前
向上发布了新的文献求助10
2秒前
匆匆赶路人完成签到 ,获得积分10
3秒前
3秒前
深情安青应助可靠的白竹采纳,获得10
3秒前
兔兔不吃草完成签到,获得积分10
4秒前
李爱国应助sherry采纳,获得10
5秒前
luanshi完成签到,获得积分10
6秒前
6秒前
7秒前
英俊书雪完成签到,获得积分10
7秒前
大个应助向上采纳,获得10
8秒前
奋斗灵波发布了新的文献求助10
8秒前
兴奋觅海完成签到,获得积分10
8秒前
8秒前
xkhxh完成签到 ,获得积分10
11秒前
VDC应助LWERTH采纳,获得30
11秒前
努力小狗发布了新的文献求助10
12秒前
小先生发布了新的文献求助10
12秒前
liuheqian发布了新的文献求助10
13秒前
15秒前
庆香完成签到,获得积分10
15秒前
15秒前
向上完成签到,获得积分20
15秒前
迷路尔曼发布了新的文献求助10
15秒前
和谐亦瑶完成签到,获得积分10
16秒前
16秒前
小二郎应助wwt采纳,获得10
16秒前
17秒前
鲜艳的冰颜完成签到,获得积分10
17秒前
19秒前
王旭智完成签到,获得积分10
19秒前
Felix发布了新的文献求助10
19秒前
沉默烨霖完成签到,获得积分10
19秒前
LDD完成签到,获得积分10
19秒前
RAB发布了新的文献求助10
20秒前
Jasper应助zmy采纳,获得10
20秒前
金甲狮王完成签到,获得积分10
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243096
求助须知:如何正确求助?哪些是违规求助? 2887115
关于积分的说明 8246636
捐赠科研通 2555713
什么是DOI,文献DOI怎么找? 1383818
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625631