聚丙烯腈
化学
过滤(数学)
纳米纤维
锌
膜
氨
气味
核化学
材料科学
复合材料
有机化学
聚合物
生物化学
统计
数学
作者
Yuejie Dou,Na Wang,Shaohua Zhang,Caihong Sun,Jinmiao Chen,Zhenghai Qu,Aihua Cui,Jiwei Li
标识
DOI:10.1016/j.jhazmat.2024.134064
摘要
Water vapor from respiration can severely accelerate the charge dissipation of the face mask, reducing filtration efficiency. Moreover, the foul odor from prolonged mask wear tends to make people remove their masks, leading to the risk of infection. In this study, an electro-blown spinning electroactive nanofibrous membrane (Zn/CB@PAN) with antibacterial and deodorization properties was prepared by adding zinc (Zn) and carbon black (CB) nanoparticles to the polyacrylonitrile (PAN) nanofibers, respectively. The filtration efficiency of Zn/CB@PAN for PM0.3 was > 99% and could still maintain excellent durability within 4 h in a high-humidity environment (25 ℃ and RH = 95%). Moreover, the bacterial interception rate of the Zn/CB@PAN could reach 99.99%, and it can kill intercepted bacteria. In addition, the deodorization rate of Zn/CB@PAN in the moist state for acetic acid was 93.75% and ammonia was 95.23%, respectively. The excellent filtering, antibacterial, and deodorizing performance of Zn/CB@PAN can be attributed to the synergistic effect of breath-induced Zn/CB galvanic couples' electroactivity, released metal ions, and generated reactive oxygen species. The developed Zn/CB@PAN could capture and kill airborne environmental pathogens under humid environments and deodorize odors from prolonged wear, holding promise for broad applications as personal protective masks.
科研通智能强力驱动
Strongly Powered by AbleSci AI