亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HR-UVFormer: A Top-Down and Multimodal Hierarchical Extraction Approach for Urban Villages

粒度 计算机科学 人工智能 像素 交叉口(航空) 萃取(化学) 比例(比率) 特征提取 模式识别(心理学) 机器学习 数据挖掘 地理 地图学 色谱法 操作系统 化学
作者
Xin Tan,Qingyan Meng,Fei Zhao,Linlin Zhang,Xinli Hu,Tamás Jancsó
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:2
标识
DOI:10.1109/tgrs.2024.3387022
摘要

Urban Villages (UVs) renovation has been incorporated into the Sustainable Development Goals (SDGs) as a result of the inequality issue among residents garnering substantial social attention. However, existing deep-learning techniques for UVs extraction have been limited to a single spatial scale (e.g., patch-level or pixel-level extraction), leading to inadequate precision and integrity in their extraction outcomes. To overcome this limitation, our study introduces HR-UVFormer, a top-down and multimodal hierarchical extraction approach that extracts UVs from a coarse scale (patch) to a fine granularity (pixel), aiming to enhance the internal completeness and boundary accuracy of the extraction results. The multimodal approach can effectively fuse multimodal features (e.g., building footprints (BF)) with remote sensing images (RSI) to enhance UVs extraction. The Shenzhen results indicate that the coarse-scale extraction accuracy achieves an overall accuracy (OA) of 98.79%, and the fine-grained extraction accuracy achieves a mean Intersection over Union (mIoU) of 93.60%. Furthermore, ablation experiments demonstrate a notable 7.14% improvement in mIoU with the hierarchical extraction strategy compared to the traditional pixel-based extraction strategy, and the fusion of BF and RSI yields further improvements of 2.78% and 0.65% in OA and mIoU, respectively. This finding confirms the synergistic effect between RSI and BF in UVs extraction, which has been further analyzed in this study. Additionally, the proposed model outperforms other deep learning models and exhibits the potential to support more modal features (e.g., POI). Finally, the experimental dataset and code can be publicly accessed at https://github.com/q1310546582/HR-UVFormer-code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vincey完成签到,获得积分10
8秒前
18秒前
jj发布了新的文献求助30
24秒前
柳代云发布了新的文献求助10
34秒前
sjj完成签到,获得积分10
45秒前
58秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
bkagyin应助lezbj99采纳,获得10
1分钟前
紧张的以山完成签到,获得积分10
1分钟前
Akim应助lezbj99采纳,获得10
1分钟前
anqi6688完成签到,获得积分10
1分钟前
HUSH完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI5应助anqi6688采纳,获得10
2分钟前
111完成签到 ,获得积分10
2分钟前
科目三应助GPTea采纳,获得10
2分钟前
Augustines完成签到,获得积分10
2分钟前
冷静新烟完成签到,获得积分20
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
Magali应助科研通管家采纳,获得30
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
田様应助科研通管家采纳,获得30
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
清脆的飞丹完成签到,获得积分10
3分钟前
冷静新烟发布了新的文献求助10
3分钟前
Krsky完成签到,获得积分10
3分钟前
浮游应助GPTea采纳,获得10
3分钟前
HUSH发布了新的文献求助20
3分钟前
Hugrainbow完成签到,获得积分10
3分钟前
maher完成签到 ,获得积分10
3分钟前
酷波er应助GPTea采纳,获得10
3分钟前
五四三二一完成签到 ,获得积分10
4分钟前
4分钟前
DPH完成签到 ,获得积分10
4分钟前
冷静新烟发布了新的文献求助10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5116357
求助须知:如何正确求助?哪些是违规求助? 4323015
关于积分的说明 13469810
捐赠科研通 4155310
什么是DOI,文献DOI怎么找? 2277113
邀请新用户注册赠送积分活动 1278970
关于科研通互助平台的介绍 1217011