清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

HR-UVFormer: A Top-Down and Multimodal Hierarchical Extraction Approach for Urban Villages

粒度 计算机科学 人工智能 像素 交叉口(航空) 萃取(化学) 比例(比率) 特征提取 模式识别(心理学) 机器学习 数据挖掘 地理 地图学 化学 色谱法 操作系统
作者
Xin Tan,Qingyan Meng,Fei Zhao,Linlin Zhang,Xinli Hu,Tamás Jancsó
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15
标识
DOI:10.1109/tgrs.2024.3387022
摘要

Urban Villages (UVs) renovation has been incorporated into the Sustainable Development Goals (SDGs) as a result of the inequality issue among residents garnering substantial social attention. However, existing deep-learning techniques for UVs extraction have been limited to a single spatial scale (e.g., patch-level or pixel-level extraction), leading to inadequate precision and integrity in their extraction outcomes. To overcome this limitation, our study introduces HR-UVFormer, a top-down and multimodal hierarchical extraction approach that extracts UVs from a coarse scale (patch) to a fine granularity (pixel), aiming to enhance the internal completeness and boundary accuracy of the extraction results. The multimodal approach can effectively fuse multimodal features (e.g., building footprints (BF)) with remote sensing images (RSI) to enhance UVs extraction. The Shenzhen results indicate that the coarse-scale extraction accuracy achieves an overall accuracy (OA) of 98.79%, and the fine-grained extraction accuracy achieves a mean Intersection over Union (mIoU) of 93.60%. Furthermore, ablation experiments demonstrate a notable 7.14% improvement in mIoU with the hierarchical extraction strategy compared to the traditional pixel-based extraction strategy, and the fusion of BF and RSI yields further improvements of 2.78% and 0.65% in OA and mIoU, respectively. This finding confirms the synergistic effect between RSI and BF in UVs extraction, which has been further analyzed in this study. Additionally, the proposed model outperforms other deep learning models and exhibits the potential to support more modal features (e.g., POI). Finally, the experimental dataset and code can be publicly accessed at https://github.com/q1310546582/HR-UVFormer-code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
30秒前
meijuan1210完成签到 ,获得积分10
35秒前
35秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
小蘑菇应助科研通管家采纳,获得10
41秒前
勤奋凡之发布了新的文献求助10
58秒前
星辰大海应助勤奋凡之采纳,获得30
1分钟前
勤奋凡之完成签到,获得积分20
1分钟前
1分钟前
1分钟前
yuyuyu完成签到,获得积分10
1分钟前
1分钟前
谨慎的雁桃完成签到,获得积分10
1分钟前
yuyuyu发布了新的文献求助10
1分钟前
wxyinhefeng完成签到 ,获得积分10
1分钟前
好想喝奶茶完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助谨慎的雁桃采纳,获得50
2分钟前
柒八染完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
良良丸完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
liuqi完成签到 ,获得积分10
3分钟前
寒冷的南琴完成签到,获得积分10
3分钟前
3分钟前
4分钟前
丘比特应助淡淡的安卉采纳,获得10
4分钟前
qingshu发布了新的文献求助10
4分钟前
华仔应助ycag采纳,获得10
4分钟前
4分钟前
无言完成签到 ,获得积分10
4分钟前
藤椒辣鱼应助qingshu采纳,获得10
4分钟前
淡淡的安卉完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
年年有余完成签到,获得积分10
5分钟前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434823
求助须知:如何正确求助?哪些是违规求助? 3032141
关于积分的说明 8944331
捐赠科研通 2720095
什么是DOI,文献DOI怎么找? 1492148
科研通“疑难数据库(出版商)”最低求助积分说明 689725
邀请新用户注册赠送积分活动 685862