Universal 12-lead ECG representation for signal denoising and cardiovascular disease detection by fusing generative and contrastive learning

自编码 人工智能 深度学习 机器学习 模式识别(心理学) 计算机科学 特征学习 降噪 特征(语言学) 推论 人工神经网络 语言学 哲学
作者
Jiguang Shi,Wenhan Liu,Huaicheng Zhang,Zhoutong Li,Sheng Chang,Hao Wang,Jin He,Qijun Huang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:94: 106253-106253 被引量:2
标识
DOI:10.1016/j.bspc.2024.106253
摘要

With the wide use of electrocardiogram (ECG) technology, more and more ECGs have been collected and stored. However, ECG labeling is costly and laborious, the utilization of unlabeled ECG is still a critical challenge. Self-supervised learning (SSL) is a way to deal with this problem, which can learn representations from unlabeled ECG and use them for downstream tasks. In this study, a novel SSL model that fuses generative learning (denoising autoencoder, DAE) and contrastive learning (CL) is proposed to learn robust representations from unlabeled ECG for downstream denoising and classification. The 12-lead ECGs are separated into one-dimensional single-lead ECGs and ECG-specific noises are added to the original ECGs as the data augmentation method. To improve the model's denoising and feature extraction abilities, the reconstruction loss and contrastive loss are combined during the pretraining phase. In the downstream classification task, a multi-branch network is used to enhance the correlation between different ECG leads. As a result, it improves the denoising performance over the standard DAE by an average of 5.20%. In the classification tasks for the Chapman, PTB-XL, and CPSC2018 databases, compared to existing work, the accuracies in linear probe are increased by at least 2.49%, 1.09%, and 2.61%, respectively. In addition, an SoC (system-on-a-chip) based heterogeneous deployment scheme is designed. It is 13.69–14.26 times faster in inference than pure software deployment and enables real-time detection of ECG signals. The proposed method provides a good way to utilize unlabeled ECG, and the designed deployment scheme has great potential for medical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助浮华采纳,获得10
2秒前
大模型应助DenM7采纳,获得10
4秒前
朴素剑心完成签到,获得积分10
4秒前
刘善行发布了新的文献求助30
5秒前
Uki完成签到 ,获得积分10
6秒前
星辰大海应助九湖夷上采纳,获得10
10秒前
11秒前
13秒前
科研搬砖发布了新的文献求助10
16秒前
喜之郎完成签到,获得积分10
16秒前
18秒前
勿忘心安应助朴素剑心采纳,获得10
18秒前
20秒前
科目三应助sdfwsdfsd采纳,获得10
20秒前
张静枝完成签到 ,获得积分10
21秒前
man完成签到,获得积分10
21秒前
林夕完成签到,获得积分10
22秒前
22秒前
雨落瑾年完成签到,获得积分10
24秒前
24秒前
吉星高照完成签到,获得积分10
25秒前
上官若男应助尔玉采纳,获得10
25秒前
香蕉觅云应助eghiefefe采纳,获得10
27秒前
28秒前
bitter发布了新的文献求助20
30秒前
燧人氏发布了新的文献求助10
30秒前
32秒前
阮楷瑞完成签到,获得积分10
32秒前
XHT完成签到,获得积分10
34秒前
情怀应助大脑袋媛媛采纳,获得10
34秒前
王壹桐完成签到,获得积分20
34秒前
34秒前
九湖夷上发布了新的文献求助10
35秒前
科研搬砖完成签到,获得积分10
35秒前
重要衬衫完成签到 ,获得积分10
35秒前
36秒前
39秒前
学渣本渣完成签到,获得积分10
39秒前
Zzz发布了新的文献求助10
39秒前
zz完成签到,获得积分10
41秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281236
关于积分的说明 10023845
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644888
邀请新用户注册赠送积分活动 782418
科研通“疑难数据库(出版商)”最低求助积分说明 749782