亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Abstract 1851: Comprehensive multi-level proteomics characterization of gastric cancer

癌症 医学 蛋白质组学 计算生物学 肿瘤科 内科学 生物 生物化学 基因
作者
Yuefan Wang
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (6_Supplement): 1851-1851
标识
DOI:10.1158/1538-7445.am2024-1851
摘要

Abstract Gastric cancer is the leading cause of cancer related deaths worldwide, accounts for over 700,000 deaths each year. There is an urgent need for advancing therapeutic strategies for patients with gastric cancer. Addressing this need, the Clinical Proteomics Tumor Analysis Consortium (CPTAC) has conducted a comprehensive characterization of gastric cancer, aiming to elucidate the complex molecular mechanisms driving this cancer type, and to discover underlying cancer biology that will form the basis for developing new approaches for precision medicine. This comprehensive study includes an integrated multi-level proteomics analysis of 165 surgically resected gastric cancer and 41 normal adjacent tissues. We employed a multi-faceted approach, analyzing the proteome, phosphoproteome and glycoproteome, along with other protein modifications including ubiquitination, acetylation, and tyrosine phosphorylation. Furthermore, we extended our research to include 74 pairs of early-onset gastric cancer and normal adjacent tissues, analyzed using a proteomic approach. We can totally identify more than 12,000 protein groups with median identification of 9750 protein groups per sample. This expansive dataset helps constructing a comprehensive multi-omics atlas of gastric cancer, offering a deep understanding into the disease's molecular landscape. The depth of this study was enhanced by incorporating multi-level proteomics data across 6 tiers, facilitating an unprecedented multi-level proteomics analysis. Our integrated approach allows us to illustrate the changes in protein expression, protein modifications, signaling pathways, and protein networks during tumorigeneis. This analysis uncovers potential therapeutic targets for personalized treatments. Overall, our study provides a multi-omics atlas for gastric cancer, a profound insight into gastric cancer biology, contributing significantly to the understanding of its pathogenesis. It could pave the way for precise treatments for gastric cancer, underscoring the potential of multi-level proteomics analyses in advancing personalized medicine. Citation Format: Yuefan Wang, Clinical Proteomic Tumor Analysis Consortium (CPTAC). Comprehensive multi-level proteomics characterization of gastric cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 1851.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜菜发布了新的文献求助10
7秒前
Jayden完成签到 ,获得积分10
1分钟前
3分钟前
思源应助科研通管家采纳,获得10
3分钟前
iamzhangly30hyit完成签到 ,获得积分10
3分钟前
lalala大鸭梨完成签到,获得积分10
3分钟前
阿杰完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
隐形曼青应助健忘绿茶采纳,获得10
5分钟前
6分钟前
哲别发布了新的文献求助10
6分钟前
白熊IceBear完成签到,获得积分10
6分钟前
jyy应助想毕业的橙子采纳,获得10
6分钟前
CodeCraft应助科研通管家采纳,获得10
7分钟前
8分钟前
8分钟前
8分钟前
健忘绿茶发布了新的文献求助10
8分钟前
英姑应助科研通管家采纳,获得10
9分钟前
赘婿应助对流域采纳,获得10
9分钟前
9分钟前
对流域发布了新的文献求助10
9分钟前
9分钟前
裴敏发布了新的文献求助10
9分钟前
9分钟前
梵星完成签到 ,获得积分10
9分钟前
10分钟前
健忘绿茶完成签到,获得积分10
10分钟前
机灵自中发布了新的文献求助10
10分钟前
呃呃诶发布了新的文献求助20
10分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
可爱的函函应助机灵自中采纳,获得10
11分钟前
科研通AI2S应助Mia采纳,获得10
11分钟前
科研通AI2S应助SDNUDRUG采纳,获得10
11分钟前
小王完成签到 ,获得积分10
12分钟前
充电宝应助泡面小猪采纳,获得10
12分钟前
12分钟前
lcs完成签到,获得积分10
12分钟前
xiuxiuzhang完成签到 ,获得积分10
13分钟前
CodeCraft应助科研通管家采纳,获得10
13分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784139
捐赠科研通 2444060
什么是DOI,文献DOI怎么找? 1299685
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997