摘要
Chapter 9 MX enes for Supercapacitor Applications Samaneh Shahsavarifar, Samaneh Shahsavarifar Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications, and Informatics, Gdansk University of Technology, Gdansk, PolandSearch for more papers by this authorHamidreza Parsimehr, Hamidreza Parsimehr Department of Chemistry, University of New Brunswick, Fredericton, CanadaSearch for more papers by this authorAmir Ershad-Langroudi, Amir Ershad-Langroudi Color and Surface Coatings Group, Polymer Processing Department, Iran Polymer and Petrochemical Institute (IPPI), Tehran, IranSearch for more papers by this author Samaneh Shahsavarifar, Samaneh Shahsavarifar Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications, and Informatics, Gdansk University of Technology, Gdansk, PolandSearch for more papers by this authorHamidreza Parsimehr, Hamidreza Parsimehr Department of Chemistry, University of New Brunswick, Fredericton, CanadaSearch for more papers by this authorAmir Ershad-Langroudi, Amir Ershad-Langroudi Color and Surface Coatings Group, Polymer Processing Department, Iran Polymer and Petrochemical Institute (IPPI), Tehran, IranSearch for more papers by this author Book Editor(s):Professor Charles Oluwaseun Adetunji, Professor Charles Oluwaseun Adetunji Edo University, Iyamho, NigeriaSearch for more papers by this authorDr Jay Singh, Dr Jay Singh Banaras Hindu University, Varanasi, Uttar Pradesh, IndiaSearch for more papers by this authorDr Kshitij Singh, Dr Kshitij Singh Govt. V. Y. T. PG. Autonomous College, Durg, Chattisgarh, IndiaSearch for more papers by this authorDr Ravindra Pratap Singh, Dr Ravindra Pratap Singh Govt. of India New Delhi, New Delhi, IndiaSearch for more papers by this author First published: 29 March 2024 https://doi.org/10.1002/9781119874027.ch9 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary The colossal importance of supercapacitors as electrochemical energy storage ( EES ) devices is because of the swift development of EES devices in recent years. Supercapacitors that have high power density are used in a variety of electric devices. Also, as a unique class of two-dimensional inorganic compounds, MXenes offer a wide range of material applications. MXenes have recently looked promising in improved high energy and power density supercapacitors, including transition metal carbides in two dimensions, carbonitrides, and nitrides. Tremendous efforts have been accomplished in recent years to develop the MXene-based supercapacitors. In this chapter, we will discuss the structure and applications of MXene, followed by a discussion of the current state of supercapacitor systems based on MXene. In the final section, we discuss the challenges and future applications of MXene for supercapacitors. References Hoque , M. , Hannan , M. , Mohamed , A. , and Ayob , A. ( 2017 ). Battery charge equalization controller in electric vehicle applications: a review . Renew. Sustain. Energy Rev. 75 : 1363 – 1385 . 10.1016/j.rser.2016.11.126 Web of Science®Google Scholar Mekhilef , S. , Saidur , R. , and Kamalisarvestani , M. ( 2012 ). Effect of dust, humidity and air velocity on efficiency of photovoltaic cells . Renew. Sustain. Energy Rev. 16 ( 5 ): 2920 – 2925 . 10.1016/j.rser.2012.02.012 CASWeb of Science®Google Scholar Huang , S. , Zhu , X. , Sarkar , S. , and Zhao , Y. ( 2019 ). Challenges and opportunities for supercapacitors . APL Mater. 7 ( 10 ): 100901 . 10.1063/1.5116146 Web of Science®Google Scholar Lv , X. , Wei , W. , Huang , B. , and Dai , Y. ( 2019 ). Achieving high energy density for lithium-ion battery anodes by Si/C nanostructure design . J. Mater. Chem. A 7 ( 5 ): 2165 – 2171 . 10.1039/C8TA10936B CASWeb of Science®Google Scholar Zheng , S. , Xue , H. , and Pang , H. ( 2018 ). Supercapacitors based on metal coordination materials . Coord. Chem. Rev. 373 : 2 – 21 . 10.1016/j.ccr.2017.07.002 CASWeb of Science®Google Scholar Huang , J.Y. , Ding , F. , Yakobson , B.I. et al. ( 2009 ). In situ observation of graphene sublimation and multi-layer edge reconstructions . Proc. Natl. Acad. Sci. U. S. A. 106 ( 25 ): 10103 – 10108 . 10.1073/pnas.0905193106 CASPubMedGoogle Scholar (a) Liu , C. and Singh , O. ( 1984 ). Thin Solid Films 113 : 165 – 172 . Google Scholar There is no corresponding record for this reference. 10.1016/0040-6090(84)90025-7 CASWeb of Science®Google Scholar (b) Joensen , P. , Frindt , R.F. , and Morrison , S.R. ( 1986 ). Mater. Res. Bull. 21 : 457 – 461 . 10.1016/0025-5408(86)90011-5 CASWeb of Science®Google Scholar Balendhran , S. , Walia , S. , Nili , H. et al. ( 2013 ). Two-dimensional molybdenum trioxide and dichalcogenides . Adv. Funct. Mater. 23 ( 32 ): 3952 – 3970 . 10.1002/adfm.201300125 CASWeb of Science®Google Scholar Coleman , J.N. , Lotya , M. , O'Neill , A. et al. ( 2011 ). Two-dimensional nanosheets produced by liquid exfoliation of layered materials . Science 331 ( 6017 ): 568 – 571 . 10.1126/science.1194975 CASPubMedWeb of Science®Google Scholar C. Shuck , G. Deysher , N. Frey et al. (ed.) ( 2020 ). Synthesis of Mo 4 VAlC 4 MAX Phase and Two-Dimensional Mo 4 VC 4 Mxene with Five Atomic Layers of Transition Metals . In: 2020 Virtual AIChE Annual Meeting . AIChE . Google Scholar Barsoum , M. ( 2000 ). A new class of solids: thermodynamically stable nanolaminates . Prog. Solid State Chem. 28 : 201 . 10.1016/S0079-6786(00)00006-6 CASWeb of Science®Google Scholar Anasori , B. , Lukatskaya , M. , and Yu , G. ( 2017 ). 2D metal carbides and nitrides (MXenes) for energy storage . Nat. Rev. Mater. 2 ( 2 ): 16098 . 10.1038/natrevmats.2016.98 CASWeb of Science®Google Scholar Alhabeb , M. , Maleski , K. , Mathis , T.S. et al. ( 2018 ). Selective etching of silicon from Ti 3 SiC 2 (MAX) to obtain 2D titanium carbide (MXene) . Angew. Chem. 130 ( 19 ): 5542 – 5546 . 10.1002/ange.201802232 Google Scholar Lukatskaya , M.R. , Mashtalir , O. , Ren , C.E. et al. ( 2013 ). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide . Forensic Sci. 341 ( 6153 ): 1502 – 1505 . CASGoogle Scholar Lukatskaya , M.R. , Kota , S. , Lin , Z. et al. ( 2017 ). Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides . Nat. Energy 2 ( 8 ): 1 – 6 . 10.1038/nenergy.2017.105 Web of Science®Google Scholar VahidMohammadi , A. , Moncada , J. , Chen , H. et al. ( 2018 ). Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance . J. Mater. Chem. A 6 ( 44 ): 22123 – 22133 . 10.1039/C8TA05807E CASWeb of Science®Google Scholar Kayali , E. , VahidMohammadi , A. , Orangi , J. , and Beidaghi , M. ( 2018 ). Controlling the dimensions of 2D MXenes for ultrahigh-rate pseudocapacitive energy storage . ACS Appl. Mater. Interfaces 10 ( 31 ): 25949 – 25954 . 10.1021/acsami.8b07397 CASPubMedWeb of Science®Google Scholar Agnese , Y.D. , Lukatskaya , M. , Cook , K. et al. ( 2014 ). Electrochem. Commun. 48 : 118 . 10.1016/j.elecom.2014.09.002 CASWeb of Science®Google Scholar Zhao , M.Q. , Ren , C.E. , Ling , Z. et al. ( 2015 ). Flexible MXene/carbon nanotube composite paper with high volumetric capacitance . Adv. Mater. 27 ( 2 ): 339 – 345 . 10.1002/adma.201404140 CASPubMedWeb of Science®Google Scholar Come , J. , Naguib , M. , Rozier , P. et al. ( 2012 ). A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode . J. Electrochem. Soc. 159 ( 8 ): A1368 . 10.1149/2.003208jes CASWeb of Science®Google Scholar Naguib , M. , Come , J. , Dyatkin , B. et al. ( 2012 ). MXene: a promising transition metal carbide anode for lithium-ion batteries . Electrochem. Commun. 16 ( 1 ): 61 – 64 . 10.1016/j.elecom.2012.01.002 CASWeb of Science®Google Scholar Ng , V.M.H. , Huang , H. , Zhou , K. et al. ( 2017 ). Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications . J. Mater. Chem. A 5 ( 7 ): 3039 – 3068 . 10.1039/C6TA06772G Web of Science®Google Scholar Mashtalir , O. , Lukatskaya , M.R. , Zhao , M.Q. et al. ( 2015 ). Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices . Adv. Mater. 27 ( 23 ): 3501 – 3506 . 10.1002/adma.201500604 CASPubMedWeb of Science®Google Scholar Harris , P.A. , Taylor , R. , Minor , B.L. et al. ( 2019 ). The REDCap consortium: Building an international community of software platform partners . J. Biomed. Inf. 95 : 103208 . 10.1016/j.jbi.2019.103208 PubMedWeb of Science®Google Scholar Lorencova , L. , Bertok , T. , Dosekova , E. et al. ( 2017 ). Electrochemical performance of Ti 3 C 2 T x MXene in aqueous media: towards ultrasensitive H 2 O 2 sensing . Electrochim. Acta 235 : 471 – 479 . 10.1016/j.electacta.2017.03.073 CASPubMedWeb of Science®Google Scholar Wu , Y. , Chen , H. , Xiao , J. et al. ( 2015 ). Adsorptive separation of methanol–acetone on isostructural series of metal–organic frameworks M-BTC (M = Ti, Fe, Cu, Co, Ru, Mo): a computational study of adsorption mechanisms and metal-substitution impacts . ACS Appl. Mater. Interfaces 7 ( 48 ): 26930 – 26940 . 10.1021/acsami.5b07665 CASPubMedGoogle Scholar Shan , Q. , Mu , X. , Alhabeb , M. et al. ( 2018 ). Two-dimensional vanadium carbide (V2C) MXene as electrode for supercapacitors with aqueous electrolytes . Electrochem. Commun. 96 : 103 – 107 . 10.1016/j.elecom.2018.10.012 CASWeb of Science®Google Scholar Peng , C. , Kuai , Z. , Zeng , T. et al. ( 2019 ). WO3 Nanorods/MXene composite as high performance electrode for supercapacitors . J. Alloys Compd. 810 : 151928 . 10.1016/j.jallcom.2019.151928 CASWeb of Science®Google Scholar Venkateshalu , S. and Grace , A.N. ( 2020 ). Ti 3 C 2 T x MXene and vanadium nitride/porous carbon as electrodes for asymmetric supercapacitors . Electrochim. Acta 341 : 136035 . 10.1016/j.electacta.2020.136035 CASWeb of Science®Google Scholar Orangi , J. , Hamade , F. , Davis , V.A. , and Beidaghi , M. ( 2019 ). 3D printing of additive-free 2D Ti 3 C 2 T x (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities . ACS Nano 14 ( 1 ): 640 – 650 . 10.1021/acsnano.9b07325 Web of Science®Google Scholar Naguib , M. , Mochalin , V.N. , Barsoum , M.W. , and Gogotsi , Y. ( 2014 ). 25th anniversary article: MXenes: a new family of two-dimensional materials . Adv. Mater. 26 ( 7 ): 992 – 1005 . 10.1002/adma.201304138 CASPubMedWeb of Science®Google Scholar Gogotsi , Y. and Anasori , B. ( 2019 ). The Rise of MXenes , 8491 – 8494 . ACS Publications . Google Scholar Khazaei , M. , Arai , M. , Sasaki , T. et al. ( 2013 ). Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides . Adv. Funct. Mater. 23 ( 17 ): 2185 – 2192 . 10.1002/adfm.201202502 CASWeb of Science®Google Scholar Khazaei , M. , Arai , M. , Sasaki , T. et al. ( 2014 ). Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family . Phys. Chem. Chem. Phys. 16 ( 17 ): 7841 – 7849 . 10.1039/C4CP00467A CASPubMedWeb of Science®Google Scholar Xie , Y. , Naguib , M. , Mochalin , V.N. et al. ( 2014 ). Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides . J. Am. Chem. Soc. 136 ( 17 ): 6385 – 6394 . 10.1021/ja501520b CASPubMedWeb of Science®Google Scholar Cc , C. , Rl , R. , and Collin , S. ( 2019 ). First evidence of the cysteine and glutathione conjugates of 3-sulfanylpentan-1-ol in hop ( Humulus lupulus L.) . J. Agric. Food. Chem. 67 ( 14 ): 4002 – 4010 . 10.1021/acs.jafc.9b00225 PubMedGoogle Scholar Ji , X. , Xu , K. , Chen , C. et al. ( 2016 ). Probing the electrochemical capacitance of MXene nanosheets for high-performance pseudocapacitors . Phys. Chem. Chem. Phys. 18 ( 6 ): 4460 – 4467 . 10.1039/C5CP07311A CASPubMedGoogle Scholar Tan , R. , Carrey , J. , Desvaux , C. et al. ( 2009 ). Magnetoresistance and collective Coulomb blockade in superlattices of ferromagnetic CoFe nanoparticles . Phys. Rev. B 79 ( 17 ): 174428 . 10.1103/PhysRevB.79.174428 Google Scholar Hope , M.A. , Forse , A.C. , Griffith , K.J. et al. ( 2016 ). NMR reveals the surface functionalisation of Ti 3 C 2 MXene . Phys. Chem. Chem. Phys. 18 ( 7 ): 5099 – 5102 . 10.1039/C6CP00330C CASPubMedWeb of Science®Google Scholar Halim , J. , Kota , S. , Lukatskaya , M.R. et al. ( 2016 ). Synthesis and characterization of 2D molybdenum carbide (MXene) . Adv. Funct. Mater. 26 ( 18 ): 3118 – 3127 . 10.1002/adfm.201505328 CASWeb of Science®Google Scholar Kumar , M. , Tomar , R.S. , Lade , H. , and Paul , D. ( 2016 ). Methylotrophic bacteria in sustainable agriculture . World J. Microbiol. Biotechnol. 32 ( 7 ): 1 – 9 . 10.1007/s11274-016-2074-8 PubMedWeb of Science®Google Scholar Sang , X. , Xie , Y. , Yilmaz , D.E. et al. ( 2018 ). In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides . Nat. Commun. 9 ( 1 ): 1 – 9 . 10.1038/s41467-018-04610-0 PubMedGoogle Scholar Si , C. , Zhou , J. , and Sun , Z. ( 2015 ). Half-metallic ferromagnetism and surface functionalization-induced metal–insulator transition in graphene-like two-dimensional Cr 2 C crystals . ACS Appl. Mater. Interfaces 7 ( 31 ): 17510 – 17515 . 10.1021/acsami.5b05401 CASPubMedWeb of Science®Google Scholar Khazaei , M. , Arai , M. , Sasaki , T. et al. ( 2015 ). OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials . Phys. Rev. B 92 ( 7 ): 075411 . 10.1103/PhysRevB.92.075411 Web of Science®Google Scholar Khazaei , M. , Ranjbar , A. , Arai , M. , and Yunoki , S. ( 2016 ). Topological insulators in the ordered double transition metals M 2′ M ″C 2 MXenes (M′ = Mo, W; M″ = Ti, Zr, Hf) . Phys. Rev. B 94 ( 12 ): 125152 . 10.1103/PhysRevB.94.125152 Web of Science®Google Scholar Liang , Y. , Khazaei , M. , Ranjbar , A. et al. ( 2017 ). Theoretical prediction of two-dimensional functionalized MXene nitrides as topological insulators . Phys. Rev. B 96 ( 19 ): 195414 . 10.1103/PhysRevB.96.195414 Web of Science®Google Scholar Si , C. , Jin , K.-H. , Zhou , J. et al. ( 2016 ). Large-gap quantum spin Hall state in MXenes: d-band topological order in a triangular lattice . Nano Lett. 16 ( 10 ): 6584 – 6591 . 10.1021/acs.nanolett.6b03118 CASPubMedWeb of Science®Google Scholar Halim , J. , Persson , I. , Moon , E.J. et al. ( 2019 ). Electronic and optical characterization of 2D Ti 2 C and Nb2C (MXene) thin films . J. Phys.: Condens. Matter 31 ( 16 ): 165301 . 10.1088/1361-648X/ab00a2 CASPubMedGoogle Scholar Halim , J. , Moon , E.J. , Eklund , P. et al. ( 2018 ). Variable range hopping and thermally activated transport in molybdenum-based MXenes . Phys. Rev. B 98 ( 10 ): 104202 . 10.1103/PhysRevB.98.104202 CASGoogle Scholar Halim , J. , Palisaitis , J. , Lu , J. et al. ( 2018 ). Synthesis of two-dimensional Nb1. 33C (MXene) with randomly distributed vacancies by etching of the quaternary solid solution (Nb2/3Sc1/3) 2AlC MAX phase . ACS Appl. Nano Mater. 1 ( 6 ): 2455 – 2460 . 10.1021/acsanm.8b00332 CASWeb of Science®Google Scholar Hart , J.L. , Hantanasirisakul , K. , Lang , A.C. et al. ( 2019 ). Control of MXenes' electronic properties through termination and intercalation . Nat. Commun. 10 ( 1 ): 1 – 10 . 10.1038/s41467-018-08169-8 PubMedGoogle Scholar Hu , T. , Zhang , H. , Wang , J. et al. ( 2015 ). Anisotropic electronic conduction in stacked two-dimensional titanium carbide . Sci. Rep. 5 ( 1 ): 1 – 8 . 10.1038/srep16329 Web of Science®Google Scholar Zha , X.-H. , Zhou , J. , Luo , K. et al. ( 2017 ). Controllable magnitude and anisotropy of the electrical conductivity of Hf 3 C 2 O 2 MXene . J. Phys.: Condens. Matter 29 ( 16 ): 165701 . 10.1088/1361-648X/aa62da PubMedGoogle Scholar Liu , J.-H. , Kan , X. , Amin , B. et al. ( 2017 ). Theoretical exploration of the potential applications of Sc-based MXenes . Phys. Chem. Chem. Phys. 19 ( 48 ): 32253 – 32261 . 10.1039/C7CP06224A CASPubMedGoogle Scholar Weng , H. , Ranjbar , A. , Liang , Y. et al. ( 2015 ). Large-gap two-dimensional topological insulator in oxygen functionalized MXene . Phys. Rev. B 92 ( 7 ): 075436 . 10.1103/PhysRevB.92.075436 Google Scholar Cartwright , J.H. ( 2000 ). Emergent global oscillations in heterogeneous excitable media: the example of pancreatic β cells . Phys. Rev. E 62 ( 1 ): 1149 . 10.1103/PhysRevE.62.1149 CASGoogle Scholar Dewprashad , B. and Eisenbraun , E. ( 1994 ). Fundamentals of epoxy formulation . J. Chem. Educ. 71 ( 4 ): 290 . 10.1021/ed071p290 CASWeb of Science®Google Scholar Dall'Agnese , C. , Dall'Agnese , Y. , Anasori , B. et al. ( 2018 ). Oxidized Ti 3 C 2 MXene nanosheets for dye-sensitized solar cells . New J. Chem. 42 ( 20 ): 16446 – 16450 . 10.1039/C8NJ03246G Web of Science®Google Scholar Yu , Z. , Feng , W. , Lu , W. et al. ( 2019 ). MXenes with tunable work functions and their application as electron-and hole-transport materials in non-fullerene organic solar cells . J. Mater. Chem. A 7 ( 18 ): 11160 – 11169 . 10.1039/C9TA01195A CASWeb of Science®Google Scholar Gao , G. , O'Mullane , A.P. , and Du , A. ( 2017 ). 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction . ACS Catal. 7 ( 1 ): 494 – 500 . 10.1021/acscatal.6b02754 CASWeb of Science®Google Scholar Zha , X.-H. , Luo , K. , Li , Q. et al. ( 2015 ). Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes . Europhys. Lett. 111 ( 2 ): 26007 . 10.1209/0295-5075/111/26007 Google Scholar Hong , L. , Klie , R.F. , and Öğüt , S. ( 2016 ). First-principles study of size-and edge-dependent properties of MXene nanoribbons . Phys. Rev. B 93 ( 11 ): 115412 . 10.1103/PhysRevB.93.115412 Google Scholar Kim , H. and Alshareef , H.N. ( 2019 ). MXetronics: MXene-enabled electronic and photonic devices . ACS Mater. Lett. 2 ( 1 ): 55 – 70 . 10.1021/acsmaterialslett.9b00419 Google Scholar Zhang , C. , Anasori , B. , Seral-Ascaso , A. et al. ( 2017 ). Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance . Adv. Mater. 29 ( 36 ): 1702678 . 10.1002/adma.201702678 CASWeb of Science®Google Scholar Gao , G. , Ding , G. , Li , J. et al. ( 2016 ). Monolayer MXenes: promising half-metals and spin gapless semiconductors . Nanoscale. 8 ( 16 ): 8986 – 8994 . 10.1039/C6NR01333C CASPubMedWeb of Science®Google Scholar Dillon , A.D. , Ghidiu , M.J. , Krick , A.L. et al. ( 2016 ). Highly conductive optical quality solution-processed films of 2D titanium carbide . Adv. Funct. Mater. 26 ( 23 ): 4162 – 4168 . 10.1002/adfm.201600357 CASWeb of Science®Google Scholar Zhang , Y. and Li , F. ( 2017 ). Robust half-metallic ferromagnetism in Cr 3 C 2 MXene . J. Magn. Magn. Mater. 433 : 222 – 226 . 10.1016/j.jmmm.2017.03.031 CASWeb of Science®Google Scholar He , J. , Lyu , P. , and Nachtigall , P. ( 2016 ). New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity . J. Mater. Chem. C 4 ( 47 ): 11143 – 11149 . 10.1039/C6TC03917K CASWeb of Science®Google Scholar Ingason , A.S. , Dahlqvist , M. , and Rosén , J. ( 2016 ). Magnetic MAX phases from theory and experiments; a review . J. Phys.: Condens. Matter 28 ( 43 ): 433003 . 10.1088/0953-8984/28/43/433003 CASPubMedWeb of Science®Google Scholar Conway , B. and Pell , W. ( 2003 ). Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices . J. Solid State Electrochem. 7 ( 9 ): 637 – 644 . 10.1007/s10008-003-0395-7 CASWeb of Science®Google Scholar Biesheuvel , P. , Porada , S. , and Dykstra , J. ( 2018 ). The difference between Faradaic and non-Faradaic electrode processes . arXiv 180902930 . Google Scholar Gogotsi , Y. and Penner , R.M. ( 2018 ). Energy Storage in Nanomaterials–Capacitive, Pseudocapacitive, or Battery-Like? 2081 – 2083 . ACS Publications . Google Scholar Naguib , M. , Mashtalir , O. , Carle , J. et al. ( 2012 ). ACS Nano 6 : 1322 . Crossref, ISI. 10.1021/nn204153h CASPubMedWeb of Science®Google Scholar Sugahara , A. , Ando , Y. , Kajiyama , S. et al. ( 2019 ). Negative dielectric constant of water confined in nanosheets . Nat. Commun. 10 ( 1 ): 1 – 7 . 10.1038/s41467-019-08789-8 PubMedGoogle Scholar Lipatov , A. , Alhabeb , M. , Lukatskaya , M.R. et al. ( 2016 ). Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti 3 C 2 MXene flakes . Adv. Electron. Mater. 2 ( 12 ): 1600255 . 10.1002/aelm.201600255 CASWeb of Science®Google Scholar Huang , S. and Mochalin , V.N. ( 2019 ). Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions . Inorg. Chem. 58 ( 3 ): 1958 – 1966 . 10.1021/acs.inorgchem.8b02890 CASPubMedWeb of Science®Google Scholar Maleski , K. , Ren , C.E. , Zhao , M.-Q. et al. ( 2018 ). Size-dependent physical and electrochemical properties of two-dimensional MXene flakes . ACS Appl. Mater. Interfaces 10 ( 29 ): 24491 – 24498 . 10.1021/acsami.8b04662 CASPubMedWeb of Science®Google Scholar Naguib , M. , Mashtalir , O. , Lukatskaya , M.R. et al. ( 2014 ). One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes . Chem. Commun. 50 ( 56 ): 7420 – 7423 . 10.1039/C4CC01646G CASPubMedWeb of Science®Google Scholar Mashtalir , O. , Cook , K.M. , Mochalin , V.N. et al. ( 2014 ). Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media . J. Mater. Chem. A 2 ( 35 ): 14334 – 14338 . 10.1039/C4TA02638A CASWeb of Science®Google Scholar Lee , Y. , Kim , S.J. , Kim , Y.-J. et al. ( 2020 ). Oxidation-resistant titanium carbide MXene films . J. Mater. Chem. A 8 ( 2 ): 573 – 581 . 10.1039/C9TA07036B CASWeb of Science®Google Scholar Fredrickson , K.D. , Anasori , B. , Seh , Z.W. et al. ( 2016 ). Effects of applied potential and water intercalation on the surface chemistry of Ti 2 C and Mo 2 C MXenes . J. Phys. Chem. C 120 ( 50 ): 28432 – 28440 . 10.1021/acs.jpcc.6b09109 CASWeb of Science®Google Scholar Tang , Q. , Zhou , Z. , and Shen , P. ( 2012 ). Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti 3 C 2 and Ti 3 C 2 X 2 (X=F, OH) monolayer . J. Am. Chem. Soc. 134 ( 40 ): 16909 – 16916 . 10.1021/ja308463r CASPubMedWeb of Science®Google Scholar Karlsson , L.H. , Birch , J. , Halim , J. et al. ( 2015 ). Atomically resolved structural and chemical investigation of single MXene sheets . Nano Lett. 15 ( 8 ): 4955 – 4960 . 10.1021/acs.nanolett.5b00737 CASPubMedWeb of Science®Google Scholar Yu , Y.-X. ( 2016 ). Prediction of mobility, enhanced storage capacity, and volume change during sodiation on interlayer-expanded functionalized Ti 3 C 2 MXene anode materials for sodium-ion batteries . J. Phys. Chem. C 120 ( 10 ): 5288 – 5296 . 10.1021/acs.jpcc.5b10366 CASWeb of Science®Google Scholar Hu , T. , Li , Z. , Hu , M. et al. ( 2017 ). Chemical origin of termination-functionalized MXenes: Ti 3 C 2 T 2 as a case study . J. Phys. Chem. C 121 ( 35 ): 19254 – 19261 . 10.1021/acs.jpcc.7b05675 CASWeb of Science®Google Scholar Wang , Z. , Tammela , P. , Strømme , M. , and Nyholm , L. ( 2015 ). Nanocellulose coupled flexible polypyrrole@ graphene oxide composite paper electrodes with high volumetric capacitance . Nanoscale 7 ( 8 ): 3418 – 3423 . 10.1039/C4NR07251K CASPubMedWeb of Science®Google Scholar Jung , N. , Kwon , S. , Lee , D. et al. ( 2013 ). Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors . Adv. Mater. 25 ( 47 ): 6854 – 6858 . 10.1002/adma.201302788 CASPubMedWeb of Science®Google Scholar Wang , Y. , Song , Y. , and Xia , Y. ( 2016 ). Electrochemical capacitors: mechanism, materials, systems, characterization and applications . Chem. Soc. Rev. 45 ( 21 ): 5925 – 5950 . 10.1039/C5CS00580A CASPubMedWeb of Science®Google Scholar Fu , J. , Li , L. , Lee , D. et al. ( 2020 ). Enhanced electrochemical performance of Ti 3 C 2 T x MXene film based supercapacitors in H 2 SO 4 /KI redox additive electrolyte . Appl. Surf. Sci. 504 : 144250 . 10.1016/j.apsusc.2019.144250 CASWeb of Science®Google Scholar Shao , H. , Lin , Z. , Xu , K. et al. ( 2019 ). Electrochemical study of pseudocapacitive behavior of Ti 3 C 2 T x MXene material in aqueous electrolytes . Energy Storage Mater. 18 : 456 – 461 . 10.1016/j.ensm.2018.12.017 Web of Science®Google Scholar Wang , H. and Wu , X. ( 2020 ). High capacitance of dipicolinic acid-intercalated MXene in neutral water-based electrolyte . Chem. Eng. J. 399 : 125850 . 10.1016/j.cej.2020.125850 CASWeb of Science®Google Scholar Djire , A. , Bos , A. , Liu , J. et al. ( 2019 ). Pseudocapacitive storage in nanolayered Ti 2 NT x MXene using Mg-Ion electrolyte . ACS Appl. Nano Mater. 2 ( 5 ): 2785 – 2795 . 10.1021/acsanm.9b00289 CASWeb of Science®Google Scholar El Ghazaly , A. , Zheng , W. , Halim , J. et al. ( 2021 ). Enhanced supercapacitive performance of Mo1. 33C MXene based asymmetric supercapacitors in lithium chloride electrolyte . Energy Storage Mater. Google Scholar Wang , Z. , Chen , Y. , Yao , M. et al. ( 2020 ). Facile fabrication of flexible rGO/MXene hybrid fiber-like electrode with high volumetric capacitance . J. Power Sources 448 : 227398 . 10.1016/j.jpowsour.2019.227398 CASWeb of Science®Google Scholar Navarro-Suárez , A.M. , Maleski , K. , Makaryan , T. et al. ( 2018 ). 2D titanium carbide/reduced graphene oxide heterostructures for supercapacitor applications . Batteries Supercaps 1 ( 1 ): 33 – 38 . 10.1002/batt.201800014 CASWeb of Science®Google Scholar Byeon , A. , Glushenkov , A.M. , Anasori , B. et al. ( 2016 ). Lithium-ion capacitors with 2D Nb 2 CT x (MXene)–carbon nanotube electrodes . J. Power Sources 326 : 686 – 694 . 10.1016/j.jpowsour.2016.03.066 CASWeb of Science®Google Scholar Li , H. , Liu , Y. , Lin , S. et al. ( 2021 ). Laser crystallized sandwich-like MXene/Fe 3 O 4 /MXene thin film electrodes for flexible supercapacitors . J. Power Sources 497 : 229882 . 10.1016/j.jpowsour.2021.229882 CASWeb of Science®Google Scholar Zhang , Y. , Cao , J. , Yuan , Z. et al. ( 2021 ). Assembling Co3O4 Nanoparticles into MXene with Enhanced electrochemical performance for advanced asymmetric supercapacitors . J. Colloid Interface Sci. 599 : 109 – 118 . 10.1016/j.jcis.2021.04.089 CASPubMedWeb of Science®Google Scholar Bo , Z. , Yi , K. , Yang , H. et al. ( 2021 ). More from less but precise: industry-relevant pseudocapacitance by atomically-precise mass-loading MnO2 within multifunctional MXene aerogel . J. Power Sources 492 : 229639 . 10.1016/j.jpowsour.2021.229639 CASWeb of Science®Google Scholar Wu , W. , Wang , C. , Zhao , C. et al. ( 2020 ). Facile strategy of hollow polyaniline nanotubes supported on Ti 3 C 2 -MXene nanosheets for High-performance symmetric supercapacitors . J. Colloid Interface Sci. 580 : 601 – 613 . 10.1016/j.jcis.2020.07.052 CASPubMedWeb of Science®Google Scholar Yang , B. , She , Y. , Zhang , C. et al. ( 2020 ). Nitrogen doped intercalation TiO 2 /TiN/Ti 3 C 2 T x nanocomposite electrodes with enhanced pseudocapacitance . Nanomaterials 10 ( 2 ): 345 . 10.3390/nano10020345 CASPubMedWeb of Science®Google Scholar Hu , M. , Cui , C. , Shi , C. et al. ( 2019 ). High-energy-density hydrogen-ion-rocking-chair hybrid supercapacitors based on Ti 3 C 2 T x MXene and carbon nanotubes mediated by redox active molecule . ACS Nano 13 ( 6 ): 6899 – 6905 . 10.1021/acsnano.9b01762 CASPubMedWeb of Science®Google Scholar Kyeremateng , N.A. , Brousse , T. , and Pech , D. ( 2017 ). Microsupercapacitors as miniaturized energy-storage components for on-chip electronics . Nat. Nanotechnol. 12 ( 1 ): 7 – 15 . 10.1038/nnano.2016.196 CASPubMedWeb of Science®Google Scholar Shen , C. , Xu , S. , Xie , Y. et al. ( 2017 ). A review of on-chip micro supercapacitors for integrated self-powering systems . J. Microelectromech. Syst. 26 ( 5 ): 949 – 965 . 10.1109/JMEMS.2017.2723018 CASWeb of Science®Google Scholar MXenes: Fundamentals and Applications ReferencesRelatedInformation