Substructural damage identification in a digital twin framework using heterogeneous response reconstruction

鉴定(生物学) 结构工程 计算机科学 工程类 生物 植物
作者
Guangcai Zhang,Zhenwei Zhou,Chunfeng Wan,Zhenghao Ding,Zhishen Wu,Liyu Xie,Songtao Xue
出处
期刊:Advances in Structural Engineering [SAGE Publishing]
标识
DOI:10.1177/13694332241242984
摘要

The external excitations, interface forces and responses at the interface degrees-of-freedom are normally required in many existing substructural condition assessment methods, while they are difficult or even impossible to be accurately measured. To address this issue, a digital twin framework for output-only substructural damage identification with data fusion of muti-type responses is proposed in the present paper. First, heterogeneous responses including displacements, strains and accelerations from the target substructure are measured and divided into two sets. The multi-type responses in measurement set 2 are reconstructed with the first set of responses and transmissibility matrix in time domain. Then, a recovery method is introduced to obtain angular displacements from translational displacements and strains, to acquire angular accelerations from translational accelerations and the second order derivatives of strains by continuous wavelet transform. The recovered angular displacements and angular accelerations are involved into the evaluation of objective function. Besides, to avoid the single and monotonous search operation of traditional optimization algorithms, a reinforced learning-assisted Q-learning hybrid evolutionary algorithm (QHEA) by integrating Q-learning algorithm, differential evolution algorithm, Jaya algorithm, is developed as a search tool to solve the optimization-based inverse problem. The most suitable search strategy among DE/rand/1, DE/rand/2, DE/current-to-best/1, Jaya mutation in each iteration is selected and implemented under the guidance of Q-learning algorithm. Numerical studies on a three-span beam structure are performed to verify the effectiveness of the proposed approach. The results demonstrates that the proposed output-only substructural damage identification approach can accurately identify locations and severities of multiple damages even with high noise-polluted responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6789发布了新的文献求助10
1秒前
1秒前
HRB完成签到 ,获得积分10
1秒前
辞清完成签到 ,获得积分10
2秒前
dahuahau完成签到,获得积分10
2秒前
dcdedgbvr完成签到,获得积分20
2秒前
orixero应助顺利的乌冬面采纳,获得30
2秒前
耐斯糖完成签到 ,获得积分10
2秒前
山东人在南京完成签到 ,获得积分10
3秒前
柒柒发布了新的文献求助10
3秒前
酷波er应助Ted采纳,获得10
3秒前
啊啊啊完成签到,获得积分10
4秒前
Somnolence咩完成签到,获得积分10
4秒前
4秒前
虚幻的凤完成签到,获得积分10
5秒前
5秒前
开朗的汉堡完成签到,获得积分10
5秒前
大胆飞荷完成签到,获得积分10
5秒前
123完成签到,获得积分10
6秒前
可可完成签到,获得积分10
6秒前
万能图书馆应助忌辛辣采纳,获得10
7秒前
陶醉世德完成签到,获得积分10
7秒前
殷勤的紫槐完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
lichunlei完成签到,获得积分10
9秒前
9秒前
欧阳振完成签到,获得积分10
10秒前
bigpluto完成签到,获得积分10
10秒前
白石溪完成签到,获得积分10
10秒前
lzh发布了新的文献求助10
11秒前
Aloha完成签到 ,获得积分10
11秒前
伶俐芷珊发布了新的文献求助10
11秒前
彩色蓉完成签到,获得积分10
12秒前
shisui完成签到,获得积分10
12秒前
酷酷的雪糕完成签到,获得积分10
12秒前
深情安青应助天舞英姿采纳,获得10
12秒前
NiNi完成签到,获得积分20
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968719
求助须知:如何正确求助?哪些是违规求助? 3513608
关于积分的说明 11168681
捐赠科研通 3248960
什么是DOI,文献DOI怎么找? 1794573
邀请新用户注册赠送积分活动 875194
科研通“疑难数据库(出版商)”最低求助积分说明 804716