Substructural damage identification in a digital twin framework using heterogeneous response reconstruction

鉴定(生物学) 结构工程 计算机科学 工程类 生物 植物
作者
Guangcai Zhang,Zhenwei Zhou,Chunfeng Wan,Zhenghao Ding,Zhishen Wu,Liyu Xie,Songtao Xue
出处
期刊:Advances in Structural Engineering [SAGE]
标识
DOI:10.1177/13694332241242984
摘要

The external excitations, interface forces and responses at the interface degrees-of-freedom are normally required in many existing substructural condition assessment methods, while they are difficult or even impossible to be accurately measured. To address this issue, a digital twin framework for output-only substructural damage identification with data fusion of muti-type responses is proposed in the present paper. First, heterogeneous responses including displacements, strains and accelerations from the target substructure are measured and divided into two sets. The multi-type responses in measurement set 2 are reconstructed with the first set of responses and transmissibility matrix in time domain. Then, a recovery method is introduced to obtain angular displacements from translational displacements and strains, to acquire angular accelerations from translational accelerations and the second order derivatives of strains by continuous wavelet transform. The recovered angular displacements and angular accelerations are involved into the evaluation of objective function. Besides, to avoid the single and monotonous search operation of traditional optimization algorithms, a reinforced learning-assisted Q-learning hybrid evolutionary algorithm (QHEA) by integrating Q-learning algorithm, differential evolution algorithm, Jaya algorithm, is developed as a search tool to solve the optimization-based inverse problem. The most suitable search strategy among DE/rand/1, DE/rand/2, DE/current-to-best/1, Jaya mutation in each iteration is selected and implemented under the guidance of Q-learning algorithm. Numerical studies on a three-span beam structure are performed to verify the effectiveness of the proposed approach. The results demonstrates that the proposed output-only substructural damage identification approach can accurately identify locations and severities of multiple damages even with high noise-polluted responses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷糊的丸子完成签到,获得积分10
刚刚
神勇乐安发布了新的文献求助10
刚刚
牛牛发布了新的文献求助10
刚刚
shanshan完成签到 ,获得积分10
1秒前
雪儿完成签到,获得积分10
1秒前
2秒前
5秒前
大模型应助suyaaaaa采纳,获得10
6秒前
www完成签到,获得积分10
6秒前
JnifferJun完成签到,获得积分10
7秒前
sjc完成签到,获得积分20
9秒前
轩辕白竹完成签到,获得积分10
9秒前
9秒前
9秒前
狂野友梅完成签到,获得积分10
10秒前
领导范儿应助朴实水壶采纳,获得10
12秒前
明理可燕发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
JnifferJun发布了新的文献求助10
15秒前
阿尔法突袭完成签到,获得积分10
17秒前
17秒前
神勇乐安完成签到,获得积分10
18秒前
Xiaoxiannv完成签到,获得积分10
19秒前
希望天下0贩的0应助znhy采纳,获得10
20秒前
21秒前
笨笨山芙应助super采纳,获得20
22秒前
幽壑之潜蛟应助crack采纳,获得10
22秒前
ZhonghanWen发布了新的文献求助20
22秒前
23秒前
花薇Liv完成签到,获得积分10
24秒前
朴实水壶发布了新的文献求助10
25秒前
swjfly完成签到,获得积分20
26秒前
JamesPei应助左惋庭采纳,获得10
27秒前
28秒前
29秒前
大模型应助Yi采纳,获得10
29秒前
29秒前
toolate完成签到,获得积分10
30秒前
克莱完成签到 ,获得积分10
32秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743755
求助须知:如何正确求助?哪些是违规求助? 5415833
关于积分的说明 15348312
捐赠科研通 4884362
什么是DOI,文献DOI怎么找? 2625769
邀请新用户注册赠送积分活动 1574598
关于科研通互助平台的介绍 1531510