Substructural damage identification in a digital twin framework using heterogeneous response reconstruction

鉴定(生物学) 结构工程 计算机科学 工程类 生物 植物
作者
Guangcai Zhang,Zhenwei Zhou,Chunfeng Wan,Zhenghao Ding,Zhishen Wu,Liyu Xie,Songtao Xue
出处
期刊:Advances in Structural Engineering [SAGE]
标识
DOI:10.1177/13694332241242984
摘要

The external excitations, interface forces and responses at the interface degrees-of-freedom are normally required in many existing substructural condition assessment methods, while they are difficult or even impossible to be accurately measured. To address this issue, a digital twin framework for output-only substructural damage identification with data fusion of muti-type responses is proposed in the present paper. First, heterogeneous responses including displacements, strains and accelerations from the target substructure are measured and divided into two sets. The multi-type responses in measurement set 2 are reconstructed with the first set of responses and transmissibility matrix in time domain. Then, a recovery method is introduced to obtain angular displacements from translational displacements and strains, to acquire angular accelerations from translational accelerations and the second order derivatives of strains by continuous wavelet transform. The recovered angular displacements and angular accelerations are involved into the evaluation of objective function. Besides, to avoid the single and monotonous search operation of traditional optimization algorithms, a reinforced learning-assisted Q-learning hybrid evolutionary algorithm (QHEA) by integrating Q-learning algorithm, differential evolution algorithm, Jaya algorithm, is developed as a search tool to solve the optimization-based inverse problem. The most suitable search strategy among DE/rand/1, DE/rand/2, DE/current-to-best/1, Jaya mutation in each iteration is selected and implemented under the guidance of Q-learning algorithm. Numerical studies on a three-span beam structure are performed to verify the effectiveness of the proposed approach. The results demonstrates that the proposed output-only substructural damage identification approach can accurately identify locations and severities of multiple damages even with high noise-polluted responses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Seven完成签到,获得积分10
1秒前
gmy完成签到,获得积分10
2秒前
Jasper应助MJJJ采纳,获得10
2秒前
dian发布了新的文献求助10
3秒前
baobeikk完成签到,获得积分10
4秒前
美满的红酒完成签到 ,获得积分10
6秒前
精明冰蓝完成签到,获得积分10
6秒前
爆米花应助liquor采纳,获得10
7秒前
8秒前
cheryjay发布了新的文献求助150
9秒前
9秒前
大方听白完成签到 ,获得积分10
9秒前
imchenyin完成签到,获得积分10
10秒前
似鱼是于无所求完成签到,获得积分10
11秒前
海咲umi应助熊猫采纳,获得10
13秒前
解语花发布了新的文献求助10
13秒前
快乐小狗完成签到,获得积分10
14秒前
朴实雨竹完成签到,获得积分10
14秒前
完美世界应助韶华采纳,获得10
14秒前
倒霉兔子完成签到,获得积分0
15秒前
16秒前
16秒前
17秒前
yuchen完成签到,获得积分10
17秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
曹操的曹发布了新的文献求助30
20秒前
在水一方应助姗珊采纳,获得10
22秒前
22秒前
liquor发布了新的文献求助10
22秒前
竹马子完成签到,获得积分10
23秒前
23秒前
可爱的青荷完成签到 ,获得积分10
23秒前
Dawn完成签到,获得积分20
25秒前
25秒前
平安完成签到 ,获得积分10
26秒前
找文献找文献完成签到 ,获得积分10
26秒前
青木完成签到 ,获得积分10
27秒前
IDHNAPHO发布了新的文献求助10
27秒前
钰泠完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603974
求助须知:如何正确求助?哪些是违规求助? 4688823
关于积分的说明 14856352
捐赠科研通 4695693
什么是DOI,文献DOI怎么找? 2541066
邀请新用户注册赠送积分活动 1507254
关于科研通互助平台的介绍 1471832