微生物
垃圾箱
微生物种群生物学
叶圈
植物凋落物
分解
土壤生物学
化学分解过程
陆地生态系统
生态学
生物
细菌
生态系统
土壤水分
遗传学
作者
Jiaying Liu,Changjun Ding,Chao Teng,Weixi Zhang,Xiaohua Su,Wenxu Zhu
摘要
ABSTRACT What is the effect of phyllosphere microorganisms on litter decomposition in the absence of colonization by soil microorganisms? Here, we simulated the litter standing decomposition stage in the field to study the differences in the composition and structure of the phyllosphere microbial community after the mixed decomposition of Populus × canadensis and Pinus sylvestris var. mongolica litter. After 15 months of mixed decomposition, we discovered that litters that were not in contact with soil had an antagonistic effect (the actual decomposition rate was 18.18%, which is lower than the expected decomposition rate) and the difference between the litters themselves resulted in a negative response to litter decomposition. In addition, there was no significant difference in bacterial and fungal community diversity after litter decomposition. The litter bacterial community was negatively responsive to litter properties and positively responsive to the fungal community. Importantly, we found that bacterial communities had a greater impact on litter decomposition than fungi. This study has enriched our understanding of the decomposition of litter itself and provided a theoretical basis for further exploring the “additive and non-additive effects” of litter decomposition and the mechanism of microbial drive. IMPORTANCE The study of litter decomposition mechanism plays an important role in the material circulation of the global ecosystem. However, previous studies have often looked at contact with soil as the starting point for decomposition. But actually, standing litter is very common in forest ecosystems. Therefore, we used field simulation experiments to simulate the decomposition of litters without contact with soil for 15 months, to explore the combined and non-added benefits of the decomposition of mixed litters, and to study the influence of microbial community composition on the decomposition rate while comparing the differences of microbial communities.
科研通智能强力驱动
Strongly Powered by AbleSci AI