阶段(地层学)
数字化病理学
结直肠癌
人工智能
医学
病理
计算机科学
癌症
肿瘤科
内科学
生物
古生物学
作者
Xuezhi Zhou,Yi Lü,Yue Xia Wu,Yi Yu,Yong Liu,Wen-Shin Chang,Zongya Zhao,Yunlong Wang,Zhixian Gao,Zhenxin Li,Yandong Zhao,Wuteng Cao
出处
期刊:Ejso
[Elsevier]
日期:2024-04-01
卷期号:: 108369-108369
标识
DOI:10.1016/j.ejso.2024.108369
摘要
TNM staging is the main reference standard for prognostic prediction of colorectal cancer (CRC), but the prognosis heterogeneity of patients with the same stage is still large. This study aimed to classify the tumor microenvironment of patients with stage III CRC and quantify the classified tumor tissues based on deep learning to explore the prognostic value of the developed tumor risk signature (TRS).
科研通智能强力驱动
Strongly Powered by AbleSci AI