已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Boosting Few-Shot Learning via Attentive Feature Regularization

Boosting(机器学习) 人工智能 正规化(语言学) 弹丸 计算机科学 特征(语言学) 模式识别(心理学) 机器学习 材料科学 哲学 语言学 冶金
作者
Xingyu Zhu,Shuo Wang,Jinda Lu,Yanbin Hao,Haifeng Liu,Xiangnan He
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (7): 7793-7801 被引量:3
标识
DOI:10.1609/aaai.v38i7.28614
摘要

Few-shot learning (FSL) based on manifold regularization aims to improve the recognition capacity of novel objects with limited training samples by mixing two samples from different categories with a blending factor. However, this mixing operation weakens the feature representation due to the linear interpolation and the overlooking of the importance of specific channels. To solve these issues, this paper proposes attentive feature regularization (AFR) which aims to improve the feature representativeness and discriminability. In our approach, we first calculate the relations between different categories of semantic labels to pick out the related features used for regularization. Then, we design two attention-based calculations at both the instance and channel levels. These calculations enable the regularization procedure to focus on two crucial aspects: the feature complementarity through adaptive interpolation in related categories and the emphasis on specific feature channels. Finally, we combine these regularization strategies to significantly improve the classifier performance. Empirical studies on several popular FSL benchmarks demonstrate the effectiveness of AFR, which improves the recognition accuracy of novel categories without the need to retrain any feature extractor, especially in the 1-shot setting. Furthermore, the proposed AFR can seamlessly integrate into other FSL methods to improve classification performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独的大灰狼完成签到 ,获得积分10
1秒前
小柒发布了新的文献求助10
2秒前
insomnia417完成签到,获得积分0
2秒前
清风浮云完成签到,获得积分10
3秒前
Masche完成签到,获得积分10
3秒前
韩寒完成签到 ,获得积分10
4秒前
好久不见完成签到,获得积分10
4秒前
傲娇的凡旋应助Capybara采纳,获得10
5秒前
DiJia完成签到 ,获得积分10
5秒前
5秒前
6秒前
诚心的信封完成签到 ,获得积分10
9秒前
充电宝应助橘绿采纳,获得10
9秒前
9秒前
10秒前
10秒前
好久不见发布了新的文献求助10
10秒前
Tuesday完成签到 ,获得积分10
12秒前
北海未暖发布了新的文献求助10
14秒前
wqc2060完成签到,获得积分10
14秒前
小彭友完成签到,获得积分10
15秒前
HJBF666完成签到 ,获得积分10
15秒前
NexusExplorer应助丸子歪歪采纳,获得10
15秒前
芦同学完成签到,获得积分10
16秒前
梁晓玲完成签到,获得积分10
16秒前
豆子完成签到 ,获得积分10
17秒前
18秒前
吉势甘完成签到 ,获得积分10
18秒前
yingying完成签到 ,获得积分10
21秒前
zhuzhezhe发布了新的文献求助10
21秒前
湛刘佳完成签到 ,获得积分10
21秒前
小蘑菇应助李白采纳,获得10
24秒前
24秒前
28秒前
北海未暖发布了新的文献求助10
28秒前
29秒前
杳鸢完成签到,获得积分0
29秒前
30秒前
酷波er应助caoruotong采纳,获得10
30秒前
霍霍完成签到 ,获得积分10
31秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477372
求助须知:如何正确求助?哪些是违规求助? 3068797
关于积分的说明 9109635
捐赠科研通 2760290
什么是DOI,文献DOI怎么找? 1514752
邀请新用户注册赠送积分活动 700461
科研通“疑难数据库(出版商)”最低求助积分说明 699547