拉图卡
开枪
化学
吲哚-3-乙酸
毒性
抗氧化剂
植物毒性
核化学
醋酸
植物
生物化学
生物
有机化学
生长素
基因
作者
Saad Hanif,Muhammad Bilal,Syeda Nasreen,Muhammad Latif,Muhammad Zia
标识
DOI:10.1016/j.jbiotec.2023.03.008
摘要
CuO Nanoparticles (CuO NPs) retard the plant growth but at appropriate concentration boosts shoot growth and therefore may function as nano-carrier or nano-fertilizer. To overcome the toxic effects, NPs can be capped with plant growth regulators. In this work, CuO-NPs (30 nm) were synthesized as the carrier and capped with indole-3-acetic acid (IAA) to generate CuO-IAA NPs (30.4 nm) as toxicity mitigant molecules. Seedlings of dicots, Lactuca sativa L. (Lettuce) were exposed to 5, 10 mg Kg−1/ of NPs in the soil to analyze shoot length, fresh and dry weight of shoots, phytochemicals, and antioxidant response. Toxicity to shoot length was recorded at higher concentrations of CuO-NPs, however, a reduction in toxicity was observed for CuO-IAA nanocomposite. Concentration-dependent decrease in the biomass of plants was also observed at higher concentrations of CuO-NPs (10 mg/kg). The antioxidative phytochemicals (phenolics and flavonoids) and antioxidative response increased in plants when exposed to CuO-NPs. However, the presence of CuO-IAA NPs combats the toxic response and a significant decrease in non-enzymatic antioxidants and total antioxidative response and total reducing power potential was observed. The results demonstrate that CuO-NPs can be used as a carrier of hormones for the enhancement of plant biomass and IAA on the surface of NPs reduces the toxic effects on NPs.
科研通智能强力驱动
Strongly Powered by AbleSci AI