结晶
材料科学
钝化
成核
钙钛矿(结构)
能量转换效率
介孔材料
化学工程
相(物质)
离子
转化(遗传学)
纳米技术
光电子学
化学
有机化学
催化作用
工程类
基因
生物化学
图层(电子)
作者
Yansong Ge,Haibing Wang,Cheng Wang,Chen Wang,Hongling Guan,Wenlong Shao,Ti Wang,Weijun Ke,Tao Chen,Guojia Fang
标识
DOI:10.1002/adma.202210186
摘要
Sequential deposition has been widely employed to modulate the crystallization of perovskite solar cells because it can avoid the formation of nucleation centers and even initial crystallization in the precursor solution. However, challenges remain in overcoming the incomplete and random transformation of PbI2 films with organic ammonium salts. Herein, a unique intermediate phase engineering strategy has been developed by simultaneously introducing 2,2-azodi(2-methylbutyronitrile) (AMBN) to both PbI2 and ammonium salt solutions to regulate perovskite crystallization. AMBN not only coordinates with PbI2 to form a favorably mesoporous PbI2 film due to the coordination between Pb2+ and the cyano group (C≡N), but also suppresses the vigorous activity of FA+ ions by interacting with FAI, leading to the full PbI2 transformation with the preferred orientation. Therefore, perovskites with favorable facet orientations are obtained, and the defects are largely suppressed owing to the passivation of uncoordinated Pb2+ and FA+ . As a result, a champion power conversion efficiency over 25% with a stabilized efficiency of 24.8% is achieved. Moreover, the device exhibits an improved operational stability, retaining 96% of initial power conversion efficiency under 1000 h continuous white-light illumination with an intensity of 100 mW cm-2 at ≈55 °C in N2 atmosphere.
科研通智能强力驱动
Strongly Powered by AbleSci AI