Deep learning prediction of motor performance in stroke individuals using neuroimaging data

人工智能 部分各向异性 支持向量机 磁共振弥散成像 卷积神经网络 神经影像学 计算机科学 机器学习 朴素贝叶斯分类器 模式识别(心理学) 交叉验证 人口 磁共振成像 心理学 医学 神经科学 环境卫生 放射科
作者
Rukiye Karakış,Kali Gürkahraman,Georgios D. Mitsis,Marie‐Hélène Boudrias
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:141: 104357-104357 被引量:6
标识
DOI:10.1016/j.jbi.2023.104357
摘要

The degree of motor impairment and profile of recovery after stroke are difficult to predict for each individual. Measures obtained from clinical assessments, as well as neurophysiological and neuroimaging techniques have been used as potential biomarkers of motor recovery, with limited accuracy up to date. To address this, the present study aimed to develop a deep learning model based on structural brain images obtained from stroke participants and healthy volunteers. The following inputs were used in a multi-channel 3D convolutional neural network (CNN) model: fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity maps obtained from Diffusion Tensor Imaging (DTI) images, white and gray matter intensity values obtained from Magnetic Resonance Imaging, as well as demographic data (e.g., age, gender). Upper limb motor function was classified into "Poor" and "Good" categories. To assess the performance of the DL model, we compared it to more standard machine learning (ML) classifiers including k-nearest neighbor, support vector machines (SVM), Decision Trees, Random Forests, Ada Boosting, and Naïve Bayes, whereby the inputs of these classifiers were the features taken from the fully connected layer of the CNN model. The highest accuracy and area under the curve values were 0.92 and 0.92 for the 3D-CNN and 0.91 and 0.91 for the SVM, respectively. The multi-channel 3D-CNN with residual blocks and SVM supported by DL was more accurate than traditional ML methods to classify upper limb motor impairment in the stroke population. These results suggest that combining volumetric DTI maps and measures of white and gray matter integrity can improve the prediction of the degree of motor impairment after stroke. Identifying the potential of recovery early on after a stroke could promote the allocation of resources to optimize the functional independence of these individuals and their quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
段仁杰完成签到,获得积分10
刚刚
Anderson123完成签到,获得积分10
1秒前
drbrianlau完成签到,获得积分10
1秒前
绿茵卡卡完成签到,获得积分10
1秒前
ding应助科研通管家采纳,获得30
1秒前
Muhi完成签到,获得积分10
1秒前
Anderson732完成签到,获得积分10
1秒前
墨痕mohen完成签到,获得积分10
1秒前
鹿雅彤完成签到 ,获得积分10
1秒前
焦糖完成签到,获得积分10
2秒前
小鹿儿完成签到,获得积分10
2秒前
3秒前
afterall完成签到 ,获得积分10
4秒前
但是完成签到,获得积分10
4秒前
黑咖喱完成签到,获得积分10
5秒前
帅气的襄完成签到,获得积分10
5秒前
科研岗完成签到,获得积分10
5秒前
LQ完成签到,获得积分10
5秒前
清酒少年游完成签到,获得积分10
5秒前
xyzdmmm完成签到,获得积分10
6秒前
yaya完成签到 ,获得积分10
7秒前
发酒疯很方便吃完成签到,获得积分10
7秒前
帅气的襄发布了新的文献求助10
7秒前
天玄一刀完成签到,获得积分10
8秒前
chris chen完成签到,获得积分0
10秒前
平常亦凝发布了新的文献求助20
11秒前
深情安青应助kisswind采纳,获得10
11秒前
吹皱一湖春水完成签到 ,获得积分10
12秒前
满意的芸完成签到 ,获得积分10
12秒前
我是老大应助迪亚波罗采纳,获得10
13秒前
叼面包的数学狗完成签到 ,获得积分10
13秒前
lkc完成签到,获得积分10
13秒前
火山暴涨球技完成签到,获得积分10
15秒前
15秒前
王桑完成签到 ,获得积分10
15秒前
暗生崎乐完成签到 ,获得积分10
15秒前
平常亦凝完成签到,获得积分20
16秒前
飞快的盼易完成签到,获得积分10
17秒前
戴维少尉完成签到,获得积分10
17秒前
偷得浮生半日闲完成签到,获得积分10
19秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793788
关于积分的说明 7807511
捐赠科研通 2450069
什么是DOI,文献DOI怎么找? 1303637
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350