已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning prediction of motor performance in stroke individuals using neuroimaging data

人工智能 部分各向异性 支持向量机 磁共振弥散成像 卷积神经网络 神经影像学 计算机科学 机器学习 朴素贝叶斯分类器 模式识别(心理学) 交叉验证 人口 磁共振成像 心理学 医学 神经科学 环境卫生 放射科
作者
Rukiye Karakış,Kali Gürkahraman,Georgios D. Mitsis,Marie‐Hélène Boudrias
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:141: 104357-104357 被引量:6
标识
DOI:10.1016/j.jbi.2023.104357
摘要

The degree of motor impairment and profile of recovery after stroke are difficult to predict for each individual. Measures obtained from clinical assessments, as well as neurophysiological and neuroimaging techniques have been used as potential biomarkers of motor recovery, with limited accuracy up to date. To address this, the present study aimed to develop a deep learning model based on structural brain images obtained from stroke participants and healthy volunteers. The following inputs were used in a multi-channel 3D convolutional neural network (CNN) model: fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity maps obtained from Diffusion Tensor Imaging (DTI) images, white and gray matter intensity values obtained from Magnetic Resonance Imaging, as well as demographic data (e.g., age, gender). Upper limb motor function was classified into "Poor" and "Good" categories. To assess the performance of the DL model, we compared it to more standard machine learning (ML) classifiers including k-nearest neighbor, support vector machines (SVM), Decision Trees, Random Forests, Ada Boosting, and Naïve Bayes, whereby the inputs of these classifiers were the features taken from the fully connected layer of the CNN model. The highest accuracy and area under the curve values were 0.92 and 0.92 for the 3D-CNN and 0.91 and 0.91 for the SVM, respectively. The multi-channel 3D-CNN with residual blocks and SVM supported by DL was more accurate than traditional ML methods to classify upper limb motor impairment in the stroke population. These results suggest that combining volumetric DTI maps and measures of white and gray matter integrity can improve the prediction of the degree of motor impairment after stroke. Identifying the potential of recovery early on after a stroke could promote the allocation of resources to optimize the functional independence of these individuals and their quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wcx发布了新的文献求助10
3秒前
王子完成签到,获得积分10
3秒前
purplelove发布了新的文献求助10
4秒前
4秒前
stevenliu67完成签到,获得积分10
7秒前
Flanker发布了新的文献求助10
9秒前
10秒前
zyy_cwdl发布了新的文献求助30
10秒前
10秒前
13秒前
13秒前
顺心tt完成签到,获得积分10
13秒前
zzd发布了新的文献求助10
13秒前
Lucas应助冷静苗条采纳,获得10
13秒前
大模型应助春风采纳,获得10
14秒前
15秒前
祁尒发布了新的文献求助10
16秒前
16秒前
WTX发布了新的文献求助30
17秒前
深情安青应助尤川采纳,获得10
17秒前
谨慎的雨梅完成签到,获得积分10
18秒前
18秒前
思源应助ssx采纳,获得10
19秒前
现代雁桃完成签到,获得积分20
19秒前
Ran666778完成签到,获得积分10
20秒前
21秒前
bkagyin应助既然采纳,获得10
24秒前
24秒前
隐形的颦发布了新的文献求助10
25秒前
斯文败类应助小泡泡采纳,获得10
27秒前
火星上的小蚂蚁完成签到,获得积分10
27秒前
28秒前
29秒前
小二郎应助omoily采纳,获得10
29秒前
失眠的血茗完成签到,获得积分10
31秒前
liang发布了新的文献求助10
31秒前
32秒前
鹑尾完成签到,获得积分10
33秒前
王也发布了新的文献求助10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956731
求助须知:如何正确求助?哪些是违规求助? 3502835
关于积分的说明 11110432
捐赠科研通 3233801
什么是DOI,文献DOI怎么找? 1787571
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172