Deep learning prediction of motor performance in stroke individuals using neuroimaging data

人工智能 部分各向异性 支持向量机 磁共振弥散成像 卷积神经网络 神经影像学 计算机科学 机器学习 朴素贝叶斯分类器 模式识别(心理学) 交叉验证 人口 磁共振成像 心理学 医学 神经科学 放射科 环境卫生
作者
Rukiye Karakış,Kali Gürkahraman,Georgios D. Mitsis,Marie‐Hélène Boudrias
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:141: 104357-104357 被引量:19
标识
DOI:10.1016/j.jbi.2023.104357
摘要

The degree of motor impairment and profile of recovery after stroke are difficult to predict for each individual. Measures obtained from clinical assessments, as well as neurophysiological and neuroimaging techniques have been used as potential biomarkers of motor recovery, with limited accuracy up to date. To address this, the present study aimed to develop a deep learning model based on structural brain images obtained from stroke participants and healthy volunteers. The following inputs were used in a multi-channel 3D convolutional neural network (CNN) model: fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity maps obtained from Diffusion Tensor Imaging (DTI) images, white and gray matter intensity values obtained from Magnetic Resonance Imaging, as well as demographic data (e.g., age, gender). Upper limb motor function was classified into "Poor" and "Good" categories. To assess the performance of the DL model, we compared it to more standard machine learning (ML) classifiers including k-nearest neighbor, support vector machines (SVM), Decision Trees, Random Forests, Ada Boosting, and Naïve Bayes, whereby the inputs of these classifiers were the features taken from the fully connected layer of the CNN model. The highest accuracy and area under the curve values were 0.92 and 0.92 for the 3D-CNN and 0.91 and 0.91 for the SVM, respectively. The multi-channel 3D-CNN with residual blocks and SVM supported by DL was more accurate than traditional ML methods to classify upper limb motor impairment in the stroke population. These results suggest that combining volumetric DTI maps and measures of white and gray matter integrity can improve the prediction of the degree of motor impairment after stroke. Identifying the potential of recovery early on after a stroke could promote the allocation of resources to optimize the functional independence of these individuals and their quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyt096完成签到,获得积分10
刚刚
嗨好完成签到,获得积分10
1秒前
情怀应助傻傻的霆采纳,获得10
1秒前
asdfqwer应助st采纳,获得20
2秒前
2秒前
xielixin2001发布了新的文献求助10
2秒前
3秒前
hyr发布了新的文献求助10
3秒前
3秒前
杰杰发布了新的文献求助10
4秒前
ssl关闭了ssl文献求助
4秒前
爱听歌笑柳完成签到,获得积分10
4秒前
无极微光应助HY采纳,获得20
4秒前
5秒前
七面东风发布了新的文献求助10
7秒前
7秒前
情怀应助独特广山采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
玖玖发布了新的文献求助10
10秒前
哈哈哈哈完成签到,获得积分10
11秒前
杰杰完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
赘婿应助hyr采纳,获得10
13秒前
13秒前
Juni完成签到,获得积分10
14秒前
14秒前
黄旭关注了科研通微信公众号
14秒前
负责琦发布了新的文献求助10
14秒前
15秒前
15秒前
正直冰露发布了新的文献求助10
16秒前
热情的远锋完成签到 ,获得积分10
17秒前
volunteer完成签到 ,获得积分10
18秒前
sanner发布了新的文献求助10
18秒前
华生发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572125
求助须知:如何正确求助?哪些是违规求助? 4657321
关于积分的说明 14720115
捐赠科研通 4598123
什么是DOI,文献DOI怎么找? 2523566
邀请新用户注册赠送积分活动 1494346
关于科研通互助平台的介绍 1464416