Deep learning prediction of motor performance in stroke individuals using neuroimaging data

人工智能 部分各向异性 支持向量机 磁共振弥散成像 卷积神经网络 神经影像学 计算机科学 机器学习 朴素贝叶斯分类器 模式识别(心理学) 交叉验证 人口 磁共振成像 心理学 医学 神经科学 放射科 环境卫生
作者
Rukiye Karakış,Kali Gürkahraman,Georgios D. Mitsis,Marie‐Hélène Boudrias
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:141: 104357-104357 被引量:19
标识
DOI:10.1016/j.jbi.2023.104357
摘要

The degree of motor impairment and profile of recovery after stroke are difficult to predict for each individual. Measures obtained from clinical assessments, as well as neurophysiological and neuroimaging techniques have been used as potential biomarkers of motor recovery, with limited accuracy up to date. To address this, the present study aimed to develop a deep learning model based on structural brain images obtained from stroke participants and healthy volunteers. The following inputs were used in a multi-channel 3D convolutional neural network (CNN) model: fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity maps obtained from Diffusion Tensor Imaging (DTI) images, white and gray matter intensity values obtained from Magnetic Resonance Imaging, as well as demographic data (e.g., age, gender). Upper limb motor function was classified into "Poor" and "Good" categories. To assess the performance of the DL model, we compared it to more standard machine learning (ML) classifiers including k-nearest neighbor, support vector machines (SVM), Decision Trees, Random Forests, Ada Boosting, and Naïve Bayes, whereby the inputs of these classifiers were the features taken from the fully connected layer of the CNN model. The highest accuracy and area under the curve values were 0.92 and 0.92 for the 3D-CNN and 0.91 and 0.91 for the SVM, respectively. The multi-channel 3D-CNN with residual blocks and SVM supported by DL was more accurate than traditional ML methods to classify upper limb motor impairment in the stroke population. These results suggest that combining volumetric DTI maps and measures of white and gray matter integrity can improve the prediction of the degree of motor impairment after stroke. Identifying the potential of recovery early on after a stroke could promote the allocation of resources to optimize the functional independence of these individuals and their quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
world完成签到,获得积分10
1秒前
1秒前
笨蛋美女完成签到 ,获得积分10
1秒前
1秒前
YUYUYU完成签到,获得积分10
2秒前
3秒前
周周发布了新的文献求助10
4秒前
诺澜啊发布了新的文献求助10
4秒前
亚亚完成签到,获得积分10
5秒前
5秒前
7秒前
7秒前
Alxe发布了新的文献求助10
7秒前
7秒前
9秒前
小鱼发布了新的文献求助10
10秒前
11秒前
阿肖呀完成签到,获得积分10
11秒前
www完成签到,获得积分10
11秒前
qiandi完成签到,获得积分10
12秒前
诺澜啊完成签到,获得积分10
12秒前
12秒前
12秒前
积极烧鹅发布了新的文献求助10
12秒前
13秒前
Am1r完成签到,获得积分10
15秒前
浮游应助NNUsusan采纳,获得10
16秒前
goftmac发布了新的文献求助10
16秒前
归尘发布了新的文献求助10
16秒前
17秒前
善学以致用应助闪闪鬼神采纳,获得10
17秒前
良辰美景发布了新的文献求助10
17秒前
17秒前
独特听芹完成签到,获得积分10
17秒前
专一的石头完成签到,获得积分10
18秒前
鑫渊完成签到,获得积分10
18秒前
18秒前
心悦SCI完成签到,获得积分10
19秒前
许安完成签到,获得积分10
21秒前
acat完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4991009
求助须知:如何正确求助?哪些是违规求助? 4239693
关于积分的说明 13207849
捐赠科研通 4034437
什么是DOI,文献DOI怎么找? 2207277
邀请新用户注册赠送积分活动 1218320
关于科研通互助平台的介绍 1136669