亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning prediction of motor performance in stroke individuals using neuroimaging data

人工智能 部分各向异性 支持向量机 磁共振弥散成像 卷积神经网络 神经影像学 计算机科学 机器学习 朴素贝叶斯分类器 模式识别(心理学) 交叉验证 人口 磁共振成像 心理学 医学 神经科学 放射科 环境卫生
作者
Rukiye Karakış,Kali Gürkahraman,Georgios D. Mitsis,Marie‐Hélène Boudrias
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:141: 104357-104357 被引量:19
标识
DOI:10.1016/j.jbi.2023.104357
摘要

The degree of motor impairment and profile of recovery after stroke are difficult to predict for each individual. Measures obtained from clinical assessments, as well as neurophysiological and neuroimaging techniques have been used as potential biomarkers of motor recovery, with limited accuracy up to date. To address this, the present study aimed to develop a deep learning model based on structural brain images obtained from stroke participants and healthy volunteers. The following inputs were used in a multi-channel 3D convolutional neural network (CNN) model: fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity maps obtained from Diffusion Tensor Imaging (DTI) images, white and gray matter intensity values obtained from Magnetic Resonance Imaging, as well as demographic data (e.g., age, gender). Upper limb motor function was classified into "Poor" and "Good" categories. To assess the performance of the DL model, we compared it to more standard machine learning (ML) classifiers including k-nearest neighbor, support vector machines (SVM), Decision Trees, Random Forests, Ada Boosting, and Naïve Bayes, whereby the inputs of these classifiers were the features taken from the fully connected layer of the CNN model. The highest accuracy and area under the curve values were 0.92 and 0.92 for the 3D-CNN and 0.91 and 0.91 for the SVM, respectively. The multi-channel 3D-CNN with residual blocks and SVM supported by DL was more accurate than traditional ML methods to classify upper limb motor impairment in the stroke population. These results suggest that combining volumetric DTI maps and measures of white and gray matter integrity can improve the prediction of the degree of motor impairment after stroke. Identifying the potential of recovery early on after a stroke could promote the allocation of resources to optimize the functional independence of these individuals and their quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
上官若男应助大晨采纳,获得10
27秒前
37秒前
NattyPoe发布了新的文献求助10
42秒前
44秒前
你好发布了新的文献求助10
47秒前
科目三应助你好采纳,获得10
52秒前
Danta发布了新的文献求助10
1分钟前
2分钟前
ziyue发布了新的文献求助10
2分钟前
2分钟前
大晨发布了新的文献求助10
2分钟前
2分钟前
river_121发布了新的文献求助10
2分钟前
Lan完成签到 ,获得积分10
2分钟前
大模型应助1123048683wm采纳,获得10
2分钟前
mxczsl完成签到,获得积分10
2分钟前
3分钟前
3分钟前
腰突患者的科研完成签到,获得积分10
3分钟前
思源应助大晨采纳,获得10
3分钟前
tianshanfeihe完成签到 ,获得积分10
4分钟前
xhsz1111完成签到 ,获得积分10
5分钟前
wakawaka完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
寂寞致幻发布了新的文献求助20
6分钟前
DONG发布了新的文献求助10
7分钟前
陶醉的烤鸡完成签到 ,获得积分10
7分钟前
7分钟前
知闲发布了新的文献求助10
7分钟前
SUNny完成签到 ,获得积分10
7分钟前
寂寞致幻完成签到,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
KYTQQ完成签到 ,获得积分10
9分钟前
小青年儿完成签到 ,获得积分10
10分钟前
星辰大海应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
12分钟前
Lucas应助科研通管家采纳,获得10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635044
求助须知:如何正确求助?哪些是违规求助? 4734672
关于积分的说明 14989679
捐赠科研通 4792784
什么是DOI,文献DOI怎么找? 2559896
邀请新用户注册赠送积分活动 1520161
关于科研通互助平台的介绍 1480221