Deep learning prediction of motor performance in stroke individuals using neuroimaging data

人工智能 部分各向异性 支持向量机 磁共振弥散成像 卷积神经网络 神经影像学 计算机科学 机器学习 朴素贝叶斯分类器 模式识别(心理学) 交叉验证 人口 磁共振成像 心理学 医学 神经科学 放射科 环境卫生
作者
Rukiye Karakış,Kali Gürkahraman,Georgios D. Mitsis,Marie‐Hélène Boudrias
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:141: 104357-104357 被引量:19
标识
DOI:10.1016/j.jbi.2023.104357
摘要

The degree of motor impairment and profile of recovery after stroke are difficult to predict for each individual. Measures obtained from clinical assessments, as well as neurophysiological and neuroimaging techniques have been used as potential biomarkers of motor recovery, with limited accuracy up to date. To address this, the present study aimed to develop a deep learning model based on structural brain images obtained from stroke participants and healthy volunteers. The following inputs were used in a multi-channel 3D convolutional neural network (CNN) model: fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity maps obtained from Diffusion Tensor Imaging (DTI) images, white and gray matter intensity values obtained from Magnetic Resonance Imaging, as well as demographic data (e.g., age, gender). Upper limb motor function was classified into "Poor" and "Good" categories. To assess the performance of the DL model, we compared it to more standard machine learning (ML) classifiers including k-nearest neighbor, support vector machines (SVM), Decision Trees, Random Forests, Ada Boosting, and Naïve Bayes, whereby the inputs of these classifiers were the features taken from the fully connected layer of the CNN model. The highest accuracy and area under the curve values were 0.92 and 0.92 for the 3D-CNN and 0.91 and 0.91 for the SVM, respectively. The multi-channel 3D-CNN with residual blocks and SVM supported by DL was more accurate than traditional ML methods to classify upper limb motor impairment in the stroke population. These results suggest that combining volumetric DTI maps and measures of white and gray matter integrity can improve the prediction of the degree of motor impairment after stroke. Identifying the potential of recovery early on after a stroke could promote the allocation of resources to optimize the functional independence of these individuals and their quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
青年才俊发布了新的文献求助10
刚刚
1秒前
靳韩羽发布了新的文献求助10
1秒前
刘丽梅完成签到 ,获得积分0
2秒前
2秒前
丰富爆米花完成签到 ,获得积分10
3秒前
3秒前
cvg发布了新的文献求助10
4秒前
耍酷的学姐完成签到,获得积分10
4秒前
科研通AI6应助十药九茯苓采纳,获得10
5秒前
5秒前
6秒前
大气乐儿发布了新的文献求助10
6秒前
科研浩完成签到 ,获得积分10
7秒前
浮游应助Ray采纳,获得10
8秒前
8秒前
pluvia发布了新的文献求助10
9秒前
10秒前
grog完成签到,获得积分10
10秒前
Orange应助Arzu采纳,获得10
10秒前
Ernest完成签到,获得积分10
11秒前
温暖的鸿发布了新的文献求助10
12秒前
12秒前
司徒不二发布了新的文献求助10
14秒前
14秒前
木又完成签到 ,获得积分10
14秒前
15秒前
琪琪完成签到,获得积分10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
18秒前
cheng发布了新的文献求助10
19秒前
123完成签到,获得积分10
19秒前
yyyy发布了新的文献求助10
19秒前
星辰大海应助grog采纳,获得10
20秒前
无花果应助黎明采纳,获得10
20秒前
清爽的人龙完成签到 ,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646612
求助须知:如何正确求助?哪些是违规求助? 4771918
关于积分的说明 15035835
捐赠科研通 4805361
什么是DOI,文献DOI怎么找? 2569639
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485860