Deep learning prediction of motor performance in stroke individuals using neuroimaging data

人工智能 部分各向异性 支持向量机 磁共振弥散成像 卷积神经网络 神经影像学 计算机科学 机器学习 朴素贝叶斯分类器 模式识别(心理学) 交叉验证 人口 磁共振成像 心理学 医学 神经科学 放射科 环境卫生
作者
Rukiye Karakış,Kali Gürkahraman,Georgios D. Mitsis,Marie‐Hélène Boudrias
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:141: 104357-104357 被引量:19
标识
DOI:10.1016/j.jbi.2023.104357
摘要

The degree of motor impairment and profile of recovery after stroke are difficult to predict for each individual. Measures obtained from clinical assessments, as well as neurophysiological and neuroimaging techniques have been used as potential biomarkers of motor recovery, with limited accuracy up to date. To address this, the present study aimed to develop a deep learning model based on structural brain images obtained from stroke participants and healthy volunteers. The following inputs were used in a multi-channel 3D convolutional neural network (CNN) model: fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity maps obtained from Diffusion Tensor Imaging (DTI) images, white and gray matter intensity values obtained from Magnetic Resonance Imaging, as well as demographic data (e.g., age, gender). Upper limb motor function was classified into "Poor" and "Good" categories. To assess the performance of the DL model, we compared it to more standard machine learning (ML) classifiers including k-nearest neighbor, support vector machines (SVM), Decision Trees, Random Forests, Ada Boosting, and Naïve Bayes, whereby the inputs of these classifiers were the features taken from the fully connected layer of the CNN model. The highest accuracy and area under the curve values were 0.92 and 0.92 for the 3D-CNN and 0.91 and 0.91 for the SVM, respectively. The multi-channel 3D-CNN with residual blocks and SVM supported by DL was more accurate than traditional ML methods to classify upper limb motor impairment in the stroke population. These results suggest that combining volumetric DTI maps and measures of white and gray matter integrity can improve the prediction of the degree of motor impairment after stroke. Identifying the potential of recovery early on after a stroke could promote the allocation of resources to optimize the functional independence of these individuals and their quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
gaoqg完成签到,获得积分10
刚刚
茁茁完成签到,获得积分10
刚刚
awrawsaf完成签到 ,获得积分10
1秒前
woshiwuziq完成签到 ,获得积分10
1秒前
xlk2222完成签到,获得积分10
1秒前
rarfen完成签到,获得积分10
2秒前
兮兮完成签到,获得积分10
2秒前
王加一发布了新的文献求助10
2秒前
巴巴拉拉巴拉完成签到 ,获得积分10
3秒前
无言完成签到,获得积分10
3秒前
汐鹿完成签到,获得积分10
4秒前
陈哈哈完成签到,获得积分10
4秒前
鱼大大关注了科研通微信公众号
4秒前
4秒前
刻苦的丹妗完成签到,获得积分10
5秒前
dscvigykyob完成签到,获得积分10
5秒前
5秒前
小默完成签到,获得积分10
5秒前
了吧完成签到,获得积分10
7秒前
缓慢修杰完成签到,获得积分10
7秒前
8秒前
15919229415完成签到,获得积分10
8秒前
yull完成签到,获得积分10
8秒前
林登万发布了新的文献求助10
10秒前
huaner完成签到,获得积分10
10秒前
xi关注了科研通微信公众号
10秒前
Steve完成签到,获得积分10
10秒前
田田完成签到,获得积分10
10秒前
11秒前
tiantian完成签到,获得积分10
11秒前
龙凌音完成签到,获得积分10
11秒前
Sdpol完成签到,获得积分10
11秒前
CodeCraft应助guajiguaji采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
Lucia发布了新的文献求助10
12秒前
orixero应助优秀的凉面采纳,获得10
13秒前
汪蔓蔓完成签到 ,获得积分10
13秒前
sai完成签到,获得积分10
13秒前
慕容绝义完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715880
求助须知:如何正确求助?哪些是违规求助? 5237687
关于积分的说明 15275397
捐赠科研通 4866497
什么是DOI,文献DOI怎么找? 2613022
邀请新用户注册赠送积分活动 1563137
关于科研通互助平台的介绍 1520689