胞外聚合物
普通小球藻
细菌
絮凝作用
化学
生物膜
生物
食品科学
藻类
植物
遗传学
有机化学
作者
Xiaolei Liu,Bin Ji,Anjie Li
出处
期刊:Water Research
[Elsevier]
日期:2023-04-09
卷期号:236: 119960-119960
被引量:31
标识
DOI:10.1016/j.watres.2023.119960
摘要
Microalgae-bacteria symbiotic systems were known to have great potential for simultaneous water purification and resource recovery, among them, microalgae-bacteria biofilm/granules have attracted much attention due to its excellent effluent quality and convenient biomass recovery. However, the effect of bacteria with attached-growth mode on microalgae, which has more significance for bioresource utilization, has been historically ignored. Thus, this study attempted to explore the responses of C. vulgaris to extracellular polymeric substances (EPS) extracted from aerobic granular sludge (AGS), for enhancing the understanding of microscopic mechanism of attached microalgae-bacteria symbiosis. Results showed that the performance of C. vulgaris was effectively boosted with AGS-EPS treatment at 12-16 mg TOC/L, highest biomass production (0.32±0.01 g/L), lipid accumulation (44.33±5.69%) and flocculation ability (20.83±0.21%) were achieved. These phenotypes were promoted associated with bioactive microbial metabolites in AGS-EPS (N-acyl-homoserine lactones, humic acid and tryptophan). Furthermore, the addition of CO2 triggered carbon flow into the storage of lipids in C. vulgaris, and the synergistic effect of AGS-EPS and CO2 for improving microalgal flocculation ability was disclosed. Transcriptomic analysis further revealed up-regulation of synthesis pathways for fatty acid and triacylglycerol that was triggered by AGS-EPS. And within the context of CO2 addition, AGS-EPS substantially upregulated the expression of aromatic protein encoding genes, which further enhanced the self-flocculation of C. vulgaris. These findings provide novel insights into the microscopic mechanism of microalgae-bacteria symbiosis, and bring new enlightenment to wastewater valorization and carbon-neutral operation of wastewater treatment plants based on the symbiotic biofilm/biogranules system.
科研通智能强力驱动
Strongly Powered by AbleSci AI