已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hourly significant wave height prediction via singular spectrum analysis and wavelet transform based models

小波 灵敏度(控制系统) 模糊逻辑 有效波高 均方误差 小波变换 奇异谱分析 奇异值分解 预测建模 计算机科学 波高 数学 算法 数据挖掘 统计 人工智能 风浪 工程类 地质学 海洋学 电子工程
作者
Abdüsselam Altunkaynak,Anıl Çelik,Murat Barış Mandev
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:281: 114771-114771 被引量:10
标识
DOI:10.1016/j.oceaneng.2023.114771
摘要

Generation of significant wave height (SWH) is considered as a complex and stochastic dynamical process whose prediction is vital for effective marine, ocean engineering, sustainable development and scientific phenomena. Based on literature review, despite numerous research attempts to forecast significant wave height with short prediction time horizons, they are incapable in yielding accurate SWH predictions. To achieve this end wavelet techniques have been intensively employed as data pre-processing tools and, have been incorporated with soft computing based approaches to improve the prediction performance of developed models. However, wavelet algorithm has some limitations such as shift sensitivity, poor directionality and lack of phase information. In addition, this technique suffers from time consuming complicated mathematical procedures. In the present study, as a way of addressing the shortcomings of wavelet tool and enhancing prediction accuracy with extended time horizons, singular spectrum analysis (SSA) is proposed as a decomposition procedure. The prediction accuracy of the three distinct models is contrasted by means of diagnostic metrics, Mean Square Error (MSE), the Nash-Sutcliffe Coefficient of efficiency (CE) and determination of coefficient (R2). With its lowest MSE and highest CE value SSA-Fuzzy model clearly outperformed the stand alone Fuzzy and W-Fuzzy models in predicting hourly SWH for all stations and future time horizons. This implies that SSA technique has the utmost capability to decompose measured data effectively into its deterministic and stochastic components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cheng发布了新的文献求助50
1秒前
3秒前
5秒前
9秒前
Ade发布了新的文献求助10
9秒前
搜集达人应助Eric采纳,获得10
10秒前
邓怡发布了新的文献求助10
10秒前
慕青应助特梅头采纳,获得10
11秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
popo完成签到,获得积分10
14秒前
17秒前
17秒前
18秒前
乱世才子完成签到,获得积分10
18秒前
Eunice完成签到 ,获得积分10
19秒前
SILENCE完成签到,获得积分10
20秒前
邓怡完成签到,获得积分10
20秒前
21秒前
22秒前
天真鹤发布了新的文献求助10
22秒前
SILENCE发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
顺利毕业完成签到 ,获得积分10
24秒前
Eric完成签到,获得积分10
25秒前
洪妹妹发布了新的文献求助10
30秒前
33秒前
淦胜坤发布了新的文献求助10
34秒前
35秒前
量子星尘发布了新的文献求助10
35秒前
迟大猫应助傲娇文博采纳,获得10
36秒前
shinyar完成签到 ,获得积分10
38秒前
JIANGSHUI发布了新的文献求助10
39秒前
不安的秋白完成签到,获得积分10
40秒前
yahonyoyoyo发布了新的文献求助10
41秒前
科研通AI5应助yahonyoyoyo采纳,获得10
44秒前
科研通AI2S应助洪妹妹采纳,获得10
44秒前
48秒前
彬彬有李完成签到,获得积分10
49秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666176
求助须知:如何正确求助?哪些是违规求助? 3225267
关于积分的说明 9762081
捐赠科研通 2935195
什么是DOI,文献DOI怎么找? 1607492
邀请新用户注册赠送积分活动 759217
科研通“疑难数据库(出版商)”最低求助积分说明 735166