转录因子
生物
柠檬酸
猕猴桃
荧光素酶
运输机
基因表达
生物化学
基因
细胞生物学
植物
转染
作者
Bei‐ling Fu,Wen‐qiu Wang,Xiang Li,Tonghui Qi,Qiufang Shen,Kunfeng Li,Xiaofen Liu,Shaojia Li,Andrew C. Allan,Yin X
摘要
Summary Citrate is a common primary metabolite which often characterizes fruit flavour. The key regulators of citrate accumulation in fruit and vegetables are poorly understood. We systematically analysed the dynamic profiles of organic acid components during the development of kiwifruit ( Actinidia spp.). Citrate continuously accumulated so that it became the predominate contributor to total acidity at harvest. Based on a co‐expression network analysis using different kiwifruit cultivars, an Al‐ACTIVATED MALATE TRANSPORTER gene ( AcALMT1 ) was identified as a candidate responsible for citrate accumulation. Electrophysiological assays using expression of this gene in Xenopus oocytes revealed that AcALMT1 functions as a citrate transporter. Additionally, transient overexpression of AcALMT1 in kiwifruit significantly increased citrate content, while tissues showing higher AcALMT1 expression accumulated more citrate. The expression of AcALMT1 was highly correlated with 17 transcription factor candidates. However, dual‐luciferase and EMSA assays indicated that only the NAC transcription factor, AcNAC1, activated AcALMT1 expression via direct binding to its promoter. Targeted CRISPR‐Cas9‐induced mutagenesis of AcNAC1 in kiwifruit resulted in dramatic declines in citrate levels while malate and quinate levels were not substantially affected. Our findings show that transcriptional regulation of a major citrate transporter, by a NAC transcription factor, is responsible for citrate accumulation in kiwifruit, which has broad implications for other fruits and vegetables.
科研通智能强力驱动
Strongly Powered by AbleSci AI