医学
视神经脊髓炎
怀孕
多发性硬化
疾病
儿科
人口
光谱紊乱
产后
免疫学
内科学
精神科
遗传学
生物
环境卫生
作者
Maria Isabel Leite,Zoya Panahloo,Niall Harrison,Jacqueline Palace
标识
DOI:10.1016/j.msard.2023.104760
摘要
Aquaporin-4 antibody positive (AQP4+) neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) are rare autoimmune diseases with overlapping phenotypes. Understanding their clinical manifestation prior to, during and after pregnancy may influence the management of women of child-bearing age (WOCBA) with these diseases.This systematic review identified relevant MEDLINE-indexed publications dated between 01 January 2011 and 01 November 2021, and congress materials from key conferences between 01 January 2019 and 01 November 2021. These were manually assessed for relevance to AQP4+ NMOSD and/or MOGAD in WOCBA, with selected data extracted and considered.In total, 107 articles were retrieved and reviewed for relevancy, including 65 clinical studies. Limited evidence was found regarding a conclusive impact of either disease on female fertility, sexual function or menarche, and impact on maternal outcomes requires further investigation in both conditions to establish risk for pre-eclampsia, gestational diabetes and other complications relative to the general population. Collated data for pregnancy outcomes show clear risks in AQP4+ NMOSD to healthy delivery and a rise in annualised relapse rate postpartum that may require adaptation of treatment regimens. Disease activity appears to be attenuated during pregnancy in MOGAD patients with an increased risk of relapse during the postpartum months, but strong conclusions cannot be made due to a paucity of available data.This review brings together the literature on AQP4+ NMOSD and MOGAD in WOCBA. The potential impact of pregnancy and the postpartum period on disease activity suggest a proactive management strategy early on may improve maternal and infant outcomes, but more clinical data are needed, particularly for MOGAD.
科研通智能强力驱动
Strongly Powered by AbleSci AI