Adaptive temporal feature modeling for visual tracking via cross-channel learning

计算机科学 子网 特征提取 人工智能 特征(语言学) BitTorrent跟踪器 频道(广播) 模式识别(心理学) 计算机视觉 跟踪(教育) 依赖关系(UML) 卷积神经网络 眼动 心理学 计算机网络 教育学 哲学 语言学 计算机安全
作者
Yuanyun Wang,Wenshuang Zhang,Changwang Lai,Jun Wang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:265: 110380-110380 被引量:15
标识
DOI:10.1016/j.knosys.2023.110380
摘要

Convolution Neural Networks (CNNs) based trackers achieve excellent tracking performance on tracking accuracy and speed. Feature extraction from the target template and search regions is a key part in visual tracking. Recently, existing feature subnetworks combine CNNs with channel attention for feature extraction. However, some existing feature subnetworks do not make the best of the target location dependencies, which result the target location dependency information lost in extracted target features. In this work, we design a novel feature extraction subnetwork with local temporal adaptive modules to obtain location sensitive importance maps, which effectively capture the diverse motion information and highlight the target location information. The target location dependency information is fully utilized to obtain more accurate target location information of the target template and search region in feature extraction subnetwork. The feature extraction subnetwork also fully exploits the local temporal semantics. Furthermore, we learn an interactive module in the template branch, which further captures the non-linear cross-channel interaction and channel-wise dependencies by combining every channel and its k neighbors. The template branch further utilizes cross-channel interactions for capturing the channel dependencies. The interactive module only increases a little extra computational burden. Comparing with other attention modules for visual tracking, this interactive module is lightweight. We propose a novel tracking framework, which mainly includes the designed feature extraction subnetwork and the interactive learning module. We evaluate the proposed tracker on GOT-10k, UAV123, DTB70, NFS, OTB-100, VOT2018, LaSOT and VOT-RGBT2019 benchmarks against advanced trackers, achieving leading performance with 60 FPS tracking speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助一鸣大人采纳,获得10
1秒前
大模型应助小杨采纳,获得10
2秒前
柠觉呢完成签到 ,获得积分10
2秒前
2秒前
谨慎的雨灵完成签到,获得积分10
2秒前
LeeChanmn发布了新的文献求助10
2秒前
青山发布了新的文献求助10
2秒前
Orange应助勤恳觅珍采纳,获得10
2秒前
accept完成签到,获得积分10
3秒前
执着鹤完成签到,获得积分10
3秒前
小马甲应助nn采纳,获得10
4秒前
4秒前
机智毛豆完成签到,获得积分10
4秒前
汉堡包应助zhangshu采纳,获得10
4秒前
Donby完成签到,获得积分10
4秒前
木头人呐完成签到 ,获得积分10
7秒前
wyw发布了新的文献求助10
8秒前
misalia完成签到,获得积分10
8秒前
xue完成签到,获得积分10
8秒前
8秒前
天天快乐应助好运連連采纳,获得10
9秒前
世外完成签到,获得积分10
10秒前
fangfang发布了新的文献求助200
10秒前
10秒前
10秒前
PYF完成签到,获得积分10
10秒前
Raymond应助木头采纳,获得10
11秒前
511完成签到 ,获得积分10
11秒前
小蘑菇应助LeeChanmn采纳,获得10
11秒前
11秒前
呆萌棒棒糖完成签到,获得积分10
12秒前
12秒前
13秒前
orixero应助落后的柜子采纳,获得10
13秒前
water完成签到,获得积分10
13秒前
14秒前
223311完成签到,获得积分10
15秒前
15秒前
dujinjun发布了新的文献求助10
15秒前
hhhhhh应助huk采纳,获得10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009254
求助须知:如何正确求助?哪些是违规求助? 3549107
关于积分的说明 11300780
捐赠科研通 3283530
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886168
科研通“疑难数据库(出版商)”最低求助积分说明 811267