Adaptive temporal feature modeling for visual tracking via cross-channel learning

计算机科学 子网 特征提取 人工智能 特征(语言学) BitTorrent跟踪器 频道(广播) 模式识别(心理学) 计算机视觉 跟踪(教育) 卷积神经网络 眼动 心理学 计算机网络 教育学 哲学 语言学 计算机安全
作者
Yuanyun Wang,Wenshuang Zhang,Changwang Lai,Jun Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:265: 110380-110380 被引量:12
标识
DOI:10.1016/j.knosys.2023.110380
摘要

Convolution Neural Networks (CNNs) based trackers achieve excellent tracking performance on tracking accuracy and speed. Feature extraction from the target template and search regions is a key part in visual tracking. Recently, existing feature subnetworks combine CNNs with channel attention for feature extraction. However, some existing feature subnetworks do not make the best of the target location dependencies, which result the target location dependency information lost in extracted target features. In this work, we design a novel feature extraction subnetwork with local temporal adaptive modules to obtain location sensitive importance maps, which effectively capture the diverse motion information and highlight the target location information. The target location dependency information is fully utilized to obtain more accurate target location information of the target template and search region in feature extraction subnetwork. The feature extraction subnetwork also fully exploits the local temporal semantics. Furthermore, we learn an interactive module in the template branch, which further captures the non-linear cross-channel interaction and channel-wise dependencies by combining every channel and its k neighbors. The template branch further utilizes cross-channel interactions for capturing the channel dependencies. The interactive module only increases a little extra computational burden. Comparing with other attention modules for visual tracking, this interactive module is lightweight. We propose a novel tracking framework, which mainly includes the designed feature extraction subnetwork and the interactive learning module. We evaluate the proposed tracker on GOT-10k, UAV123, DTB70, NFS, OTB-100, VOT2018, LaSOT and VOT-RGBT2019 benchmarks against advanced trackers, achieving leading performance with 60 FPS tracking speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenshen完成签到,获得积分10
刚刚
万能图书馆应助纸鸢采纳,获得10
1秒前
1秒前
multimodal发布了新的文献求助10
2秒前
华仔应助谜湖采纳,获得10
3秒前
chenshen发布了新的文献求助10
3秒前
3秒前
一二三发布了新的文献求助10
4秒前
4秒前
4秒前
MZY应助xxyqddx采纳,获得10
5秒前
谦让冰真完成签到,获得积分20
5秒前
5秒前
6秒前
shinysparrow应助否认冶游史采纳,获得150
6秒前
6秒前
李敏之发布了新的文献求助30
6秒前
7秒前
HH关注了科研通微信公众号
7秒前
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
小夏1855发布了新的文献求助20
9秒前
10秒前
10秒前
czz发布了新的文献求助30
10秒前
10秒前
11秒前
肥波发布了新的文献求助10
12秒前
甜甜酷盖完成签到,获得积分10
12秒前
bkagyin应助山月采纳,获得10
12秒前
研友_VZG7GZ应助chenshen采纳,获得10
13秒前
15秒前
阳光青烟发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161364
求助须知:如何正确求助?哪些是违规求助? 2812813
关于积分的说明 7896925
捐赠科研通 2471712
什么是DOI,文献DOI怎么找? 1316085
科研通“疑难数据库(出版商)”最低求助积分说明 631156
版权声明 602112