Rational design of CdS/BiOCl S-scheme heterojunction for effective boosting piezocatalytic H2 evolution and pollutants degradation performances

降级(电信) 罗丹明B 甲基橙 异质结 盐酸四环素 反应速率常数 催化作用 材料科学 化学工程 制氢 化学 光化学 光催化 计算机科学 动力学 光电子学 工程类 电信 四环素 有机化学 生物化学 物理 抗生素 量子力学
作者
Pingyu Hao,Yali Cao,Xueer Ning,Ruqi Chen,Jing Xie,Jindou Hu,Zhenjiang Lu,Aize Hao
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:639: 343-354 被引量:89
标识
DOI:10.1016/j.jcis.2023.02.075
摘要

Piezocatalysis as an emerging technology is broadly applied in hydrogen evolution and organic pollutants degradation aspects. However, the dissatisfactory piezocatalytic activity is a severe bottleneck for its practical applications. In this work, CdS/BiOCl S-scheme heterojunction piezocatalysts were constructed and explored the performances of piezocatalytic hydrogen (H2) evolution and organic pollutants degradation (methylene orange, rhodamine B and tetracycline hydrochloride) under strain by ultrasonic vibration. Interestingly, CdS/BiOCl presents a volcano-type relationship between catalytic activity and CdS contents, namely firstly increases and then decreases with the increase of CdS content. Optimal 20 % CdS/BiOCl endows superior piezocatalytic H2 generation rate of 1048.2 μmol g−1h−1 in methanol solution, which is 2.3 and 3.4 times higher than that of pure BiOCl and CdS, respectively. This value is also much higher than the recently reported Bi-based and most of other typical piezocatalysts. Meanwhile, 5 % CdS/BiOCl delivers the highest reaction kinetics rate constant and degradation rate toward various pollutants compared with other catalysts, which also exceeds that of the previously numerous results. Improved catalytic capacity of CdS/BiOCl is mainly ascribed to the construction of S-scheme heterojunction for enhancing the redox capacity as well as inducing more effective charge carriers separation and transfer. Moreover, S-scheme charge transfer mechanism is demonstrated via electron paramagnetic resonance and Quasi-In-situ X-ray photoelectron spectroscopy measurements. Eventually, a novel piezocatalytic mechanism of CdS/BiOCl S-scheme heterojunction has been proposed. This research develops a novel pathway for designing highly efficient piezocatalysts and provides a deeper understanding in construction of Bi-based S-scheme heterojunction catalysts for energy conservation and wastewater disposal applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
ylh发布了新的文献求助10
5秒前
Kilin完成签到,获得积分10
5秒前
友好真发布了新的文献求助10
6秒前
www发布了新的文献求助10
6秒前
小赵同学完成签到,获得积分10
7秒前
水星摸鱼发布了新的文献求助30
8秒前
GYGeorge完成签到,获得积分10
9秒前
Akim应助阿聪采纳,获得100
10秒前
bkagyin应助Jason采纳,获得10
12秒前
晶坚强完成签到,获得积分10
12秒前
梓树发布了新的文献求助10
14秒前
英姑应助123456789采纳,获得10
14秒前
14秒前
16秒前
李笑完成签到,获得积分10
16秒前
友好真完成签到,获得积分10
16秒前
诺贝尔天才小狗完成签到,获得积分10
18秒前
流年发布了新的文献求助20
18秒前
水星摸鱼完成签到,获得积分10
19秒前
思源应助伍寒烟采纳,获得10
21秒前
TBI发布了新的文献求助200
21秒前
22秒前
23秒前
26秒前
Hello应助梓树采纳,获得10
27秒前
nml发布了新的文献求助10
27秒前
29秒前
名称完成签到,获得积分10
29秒前
tomorrow发布了新的文献求助30
29秒前
ED应助慵懒的树采纳,获得10
30秒前
flow完成签到 ,获得积分10
31秒前
tqmx完成签到,获得积分10
32秒前
苯环完成签到,获得积分10
33秒前
桐桐应助provin采纳,获得10
34秒前
无花果应助疯癫科研人采纳,获得10
35秒前
花花发布了新的文献求助10
35秒前
LJX完成签到,获得积分10
36秒前
一天一篇sci完成签到,获得积分10
37秒前
量子星尘发布了新的文献求助10
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952553
求助须知:如何正确求助?哪些是违规求助? 3497981
关于积分的说明 11089564
捐赠科研通 3228449
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309