降级(电信)
罗丹明B
甲基橙
异质结
盐酸四环素
反应速率常数
催化作用
材料科学
化学工程
制氢
化学
光化学
光催化
计算机科学
动力学
光电子学
工程类
电信
四环素
有机化学
生物化学
物理
抗生素
量子力学
作者
Pingyu Hao,Yali Cao,Xueer Ning,Ruqi Chen,Jing Xie,Jindou Hu,Zhenjiang Lu,Aize Hao
标识
DOI:10.1016/j.jcis.2023.02.075
摘要
Piezocatalysis as an emerging technology is broadly applied in hydrogen evolution and organic pollutants degradation aspects. However, the dissatisfactory piezocatalytic activity is a severe bottleneck for its practical applications. In this work, CdS/BiOCl S-scheme heterojunction piezocatalysts were constructed and explored the performances of piezocatalytic hydrogen (H2) evolution and organic pollutants degradation (methylene orange, rhodamine B and tetracycline hydrochloride) under strain by ultrasonic vibration. Interestingly, CdS/BiOCl presents a volcano-type relationship between catalytic activity and CdS contents, namely firstly increases and then decreases with the increase of CdS content. Optimal 20 % CdS/BiOCl endows superior piezocatalytic H2 generation rate of 1048.2 μmol g−1h−1 in methanol solution, which is 2.3 and 3.4 times higher than that of pure BiOCl and CdS, respectively. This value is also much higher than the recently reported Bi-based and most of other typical piezocatalysts. Meanwhile, 5 % CdS/BiOCl delivers the highest reaction kinetics rate constant and degradation rate toward various pollutants compared with other catalysts, which also exceeds that of the previously numerous results. Improved catalytic capacity of CdS/BiOCl is mainly ascribed to the construction of S-scheme heterojunction for enhancing the redox capacity as well as inducing more effective charge carriers separation and transfer. Moreover, S-scheme charge transfer mechanism is demonstrated via electron paramagnetic resonance and Quasi-In-situ X-ray photoelectron spectroscopy measurements. Eventually, a novel piezocatalytic mechanism of CdS/BiOCl S-scheme heterojunction has been proposed. This research develops a novel pathway for designing highly efficient piezocatalysts and provides a deeper understanding in construction of Bi-based S-scheme heterojunction catalysts for energy conservation and wastewater disposal applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI