光电流
化学
检出限
大肠杆菌
免疫分析
极性(国际关系)
线性范围
光电化学
纳米技术
电极
光电子学
色谱法
材料科学
电化学
生物化学
抗体
物理化学
生物
细胞
免疫学
基因
作者
Xiaomei Chen,Mingming Yin,Rui Ge,Jie Wei,Tianhui Jiao,Qingmin Chen,Munetaka Oyama,Quansheng Chen
标识
DOI:10.1021/acs.analchem.2c03235
摘要
Sensitive, portable methods of detection for foodborne pathogens hold great significance for the early warning and prevention of foodborne diseases and environmental pollution. Restricted by a complicated matrix and limited signaling strategies, developing a ready-to-use sensing platform with ultrahigh sensitivity remains challenging. In this work, near-infrared (NIR) light-responsive AgBiS2 nanoflowers (NFs) and Cu2O nanocubes (NCs) were introduced to construct a novel target-induced photocurrent-polarity-switchable system and verified for the development of an all-in-one, ready-to-use photoelectrochemical (PEC) immunosensor. NIR-responsive n-type AgBiS2 NFs and p-type Cu2O NCs producing anodic and cathodic photocurrents were conjugated with monoclonal (MAb1) and polyclonal antibodies (PAb2), respectively. Using a sandwich-type immunocomplex bridged by Escherichia coli O157:H7, an efficient photocurrent-polarity-switching PEC system was formed on a paper-based working electrode (PWE). Owing to the spatial separation of the photogenerated carriers and the elimination of false-positive/negative signals by the polarity-switchable photocurrent, the proposed NIR PEC immunoassay for E. coli O157:H7 exhibits a considerably low detection limit of 8 colony-forming units/milliliter (CFU/mL) with a linear range from 25 to 5 × 107 CFU/mL. The platform includes a PWE with an automatic cleaning function and a portable PEC analyzer with smartphone-compatible Bluetooth capability, thus achieving point-of-care testing of E. coli O157:H7. The sensor was applied to the analysis of pork samples artificially contaminated with E. coli O157:H7, and the detection results were in good agreement with the plate counting method, a gold standard in the field. This work aimed to investigate the photoelectric activity of the NIR-responsive p/n-type composites and to provide a new signal-reversal route for the construction of an all-in-one ready-to-use PEC immunosensor for the detection of low-concentration biomolecules.
科研通智能强力驱动
Strongly Powered by AbleSci AI