已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of computational methods for class A GPCR Ligand discovery

G蛋白偶联受体 药物发现 计算生物学 鉴定(生物学) 配体(生物化学) 计算机科学 功能(生物学) 生物信息学 生物 受体 生物化学 细胞生物学 植物
作者
Gregory L. Szwabowski,Daniel L. Baker,Abby L. Parrill
出处
期刊:Journal of Molecular Graphics & Modelling [Elsevier]
卷期号:121: 108434-108434 被引量:4
标识
DOI:10.1016/j.jmgm.2023.108434
摘要

G protein-coupled receptors (GPCR) are integral membrane proteins of considerable interest as targets for drug development due to their role in transmitting cellular signals in a multitude of biological processes. Of the six classes categorizing GPCR (A, B, C, D, E, and F), class A contains the largest number of therapeutically relevant GPCR. Despite their importance as drug targets, many challenges exist for the discovery of novel class A GPCR ligands serving as drug precursors. Though knowledge of the structural and functional characteristics of GPCR has grown significantly over the past 20 years, a large portion of GPCR lack reported, experimentally determined structures. Furthermore, many GPCR have no known endogenous and/or synthetic ligands, limiting further exploration of their biochemical, cellular, and physiological roles. While many successes in GPCR ligand discovery have resulted from experimental high-throughput screening, computational methods have played an increasingly important role in GPCR ligand identification in the past decade. Here we discuss computational techniques applied to GPCR ligand discovery. This review summarizes class A GPCR structure/function and provides an overview of many obstacles currently faced in GPCR ligand discovery. Furthermore, we discuss applications and recent successes of computational techniques used to predict GPCR structure as well as present a summary of ligand- and structure-based methods used to identify potential GPCR ligands. Finally, we discuss computational hit list generation and refinement and provide comprehensive workflows for GPCR ligand identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等风完成签到,获得积分10
2秒前
lf-leo完成签到,获得积分10
3秒前
4秒前
5秒前
田様应助乖乖采纳,获得50
7秒前
JamesPei应助DAKE采纳,获得10
8秒前
song完成签到,获得积分10
9秒前
9秒前
10秒前
kls发布了新的文献求助10
10秒前
学不完也学不会完成签到,获得积分10
12秒前
13秒前
13秒前
FashionBoy应助加菲丰丰采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
17秒前
17秒前
18秒前
19秒前
21秒前
咿咿呀呀发布了新的文献求助10
22秒前
可可发布了新的文献求助10
23秒前
24秒前
26秒前
狗不李发布了新的文献求助10
26秒前
27秒前
28秒前
薄荷小姐完成签到 ,获得积分10
28秒前
邱邱发布了新的文献求助10
30秒前
junjun发布了新的文献求助10
30秒前
blue2021发布了新的文献求助10
31秒前
33秒前
子桑南发布了新的文献求助300
33秒前
33秒前
王王发布了新的文献求助10
33秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142265
求助须知:如何正确求助?哪些是违规求助? 2793200
关于积分的说明 7805849
捐赠科研通 2449486
什么是DOI,文献DOI怎么找? 1303333
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601291