Collaborative Meta-Path Modeling for Explainable Recommendation

推荐系统 计算机科学 路径(计算) 协同过滤 相似性(几何) 符号 情报检索 多样性(控制论) 数据挖掘 人工智能 机器学习 数学 程序设计语言 算术 图像(数学)
作者
Zhe-Rui Yang,Zhen-Yu He,Chang‐Dong Wang,Jianhuang Lai,Zhihong Tian
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 1805-1815 被引量:6
标识
DOI:10.1109/tcss.2023.3243939
摘要

Although recommender systems have achieved considerable success, sometimes it is difficult to convince users due to the failure to explain the recommendation results. For this reason, explainable recommender systems have drawn a lot of attention in recent years. Among explainable recommendation models, the meta-path-based model plays a significant role because it can reason over the path connecting a user–item pair to achieve explainability. However, it is difficult for the meta-path-based model to achieve such a common explanation in collaborative filtering as "a user similar to you has purchased item $A$ " because there is no such meta-path. In this article, we contribute a new model named collaborative meta-path modeling for explainable recommendation (COMPER). It models the similarity of user pairs and item pairs through rating information and constructs collaborative meta-paths for explainability. In addition, we design an attention mechanism to aggregate different paths connecting the target user and the target item. Moreover, the information of the subgraph composed of all paths connecting the target user and the target item is integrated for rating prediction. Extensive experiments on five real-world datasets demonstrate that COMPER achieves good performance in a variety of scenarios, achieving improvements over several baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
收拾收拾发布了新的文献求助30
刚刚
活力安南完成签到,获得积分10
3秒前
robinhood完成签到,获得积分10
3秒前
过时的映雁完成签到,获得积分10
3秒前
专注的班发布了新的文献求助10
4秒前
田様应助276868sxzz采纳,获得10
5秒前
first发布了新的文献求助10
5秒前
李健的粉丝团团长应助zyj采纳,获得10
5秒前
科研通AI5应助安殿夏采纳,获得10
7秒前
潘宋完成签到,获得积分10
7秒前
研友_LX66qZ完成签到,获得积分10
7秒前
HMONEY应助街霸采纳,获得10
7秒前
8秒前
9秒前
9秒前
Nzee完成签到,获得积分10
9秒前
JIA完成签到,获得积分20
10秒前
10秒前
华仔应助mice33采纳,获得10
10秒前
共享精神应助高大雁兰采纳,获得10
11秒前
CodeCraft应助爬不起来采纳,获得10
12秒前
yy应助简易采纳,获得10
14秒前
丘比特应助nnn采纳,获得10
15秒前
first完成签到,获得积分10
16秒前
JIA发布了新的文献求助30
16秒前
wzz完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
压线大王完成签到 ,获得积分10
18秒前
20秒前
嘚嘚发布了新的文献求助10
20秒前
爬不起来发布了新的文献求助10
21秒前
橙皮or陈皮完成签到,获得积分10
21秒前
21秒前
vivianzhang完成签到,获得积分10
22秒前
包容的海豚完成签到 ,获得积分10
23秒前
276868sxzz发布了新的文献求助10
23秒前
24秒前
糖果应助每文采纳,获得10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740628
求助须知:如何正确求助?哪些是违规求助? 3283472
关于积分的说明 10035486
捐赠科研通 3000287
什么是DOI,文献DOI怎么找? 1646438
邀请新用户注册赠送积分活动 783615
科研通“疑难数据库(出版商)”最低求助积分说明 750411