Synthetic MRI, multiplexed sensitivity encoding, and BI-RADS for benign and malignant breast cancer discrimination

乳腺癌 双雷达 灵敏度(控制系统) 医学 编码(内存) 癌症 癌症研究 肿瘤科 乳腺摄影术 放射科 内科学 计算机科学 人工智能 电子工程 工程类
作者
Jinrui Liu,Mengying Xu,Jialiang Ren,Zhihao Li,Xi Lu,Bing Chen
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:12 被引量:2
标识
DOI:10.3389/fonc.2022.1080580
摘要

To assess the diagnostic value of predictive models based on synthetic magnetic resonance imaging (syMRI), multiplexed sensitivity encoding (MUSE) sequences, and Breast Imaging Reporting and Data System (BI-RADS) in the differentiation of benign and malignant breast lesions.Clinical and MRI data of 158 patients with breast lesions who underwent dynamic contrast-enhanced MRI (DCE-MRI), syMRI, and MUSE sequences between September 2019 and December 2020 were retrospectively collected. The apparent diffusion coefficient (ADC) values of MUSE and quantitative relaxation parameters (longitudinal and transverse relaxation times [T1, T2], and proton density [PD] values) of syMRI were measured, and the parameter variation values and change in their ratios were calculated. The patients were randomly divided into training (n = 111) and validation (n = 47) groups at a ratio of 7:3. A nomogram was built based on univariate and multivariate logistic regression analyses in the training group and was verified in the validation group. The discriminatory and predictive capacities of the nomogram were assessed by the receiver operating characteristic curve and area under the curve (AUC). The AUC was compared by DeLong test.In the training group, univariate analysis showed that age, lesion diameter, menopausal status, ADC, T2pre, PDpre, PDGd, T2Delta, and T2ratio were significantly different between benign and malignant breast lesions (P < 0.05). Multivariate logistic regression analysis showed that ADC and T2pre were significant variables (all P < 0.05) in breast cancer diagnosis. The quantitative model (model A: ADC, T2pre), BI-RADS model (model B), and multi-parameter model (model C: ADC, T2pre, BI-RADS) were established by combining the above independent variables, among which model C had the highest diagnostic performance, with AUC of 0.965 and 0.986 in the training and validation groups, respectively.The prediction model established based on syMRI, MUSE sequence, and BI-RADS is helpful for clinical differentiation of breast tumors and provides more accurate information for individualized diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研民工完成签到,获得积分10
3秒前
liujianxin完成签到,获得积分20
4秒前
开朗若之完成签到 ,获得积分10
4秒前
郑成灿完成签到 ,获得积分10
5秒前
无一完成签到 ,获得积分0
5秒前
wuli林完成签到,获得积分10
6秒前
文献求助完成签到,获得积分10
6秒前
哦哦完成签到,获得积分10
9秒前
浮游应助carbonhan采纳,获得10
10秒前
ataybabdallah完成签到,获得积分10
10秒前
轻松的鸿煊完成签到 ,获得积分10
11秒前
踏实的盼秋完成签到 ,获得积分10
12秒前
12秒前
朱妮妮完成签到,获得积分10
13秒前
小包子完成签到,获得积分10
14秒前
兴奋路人完成签到,获得积分10
15秒前
15秒前
CX330发布了新的文献求助30
16秒前
清修发布了新的文献求助10
17秒前
Ali完成签到,获得积分10
17秒前
HuiJN完成签到 ,获得积分10
17秒前
半生完成签到 ,获得积分10
19秒前
刘汉淼完成签到,获得积分10
21秒前
安心完成签到 ,获得积分10
22秒前
行舟完成签到,获得积分10
22秒前
清新的易真完成签到,获得积分10
22秒前
莫等闲完成签到,获得积分10
22秒前
i羽翼深蓝i完成签到,获得积分10
23秒前
carbonhan完成签到,获得积分10
23秒前
可靠雅青完成签到 ,获得积分10
23秒前
YangSY完成签到,获得积分10
24秒前
wyt完成签到,获得积分20
25秒前
Leo完成签到,获得积分10
25秒前
cccr完成签到 ,获得积分10
25秒前
26秒前
26秒前
务实的一斩完成签到 ,获得积分10
26秒前
HiDasiy完成签到 ,获得积分10
27秒前
修辛完成签到 ,获得积分10
28秒前
伊笙完成签到 ,获得积分0
30秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347734
求助须知:如何正确求助?哪些是违规求助? 4482003
关于积分的说明 13948481
捐赠科研通 4380368
什么是DOI,文献DOI怎么找? 2406916
邀请新用户注册赠送积分活动 1399501
关于科研通互助平台的介绍 1372698