Synthetic MRI, multiplexed sensitivity encoding, and BI-RADS for benign and malignant breast cancer discrimination

乳腺癌 双雷达 灵敏度(控制系统) 医学 编码(内存) 癌症 癌症研究 肿瘤科 乳腺摄影术 放射科 内科学 计算机科学 人工智能 电子工程 工程类
作者
Jinrui Liu,Mengying Xu,Jialiang Ren,Zhihao Li,Xi Lu,Bing Chen
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:12 被引量:2
标识
DOI:10.3389/fonc.2022.1080580
摘要

To assess the diagnostic value of predictive models based on synthetic magnetic resonance imaging (syMRI), multiplexed sensitivity encoding (MUSE) sequences, and Breast Imaging Reporting and Data System (BI-RADS) in the differentiation of benign and malignant breast lesions.Clinical and MRI data of 158 patients with breast lesions who underwent dynamic contrast-enhanced MRI (DCE-MRI), syMRI, and MUSE sequences between September 2019 and December 2020 were retrospectively collected. The apparent diffusion coefficient (ADC) values of MUSE and quantitative relaxation parameters (longitudinal and transverse relaxation times [T1, T2], and proton density [PD] values) of syMRI were measured, and the parameter variation values and change in their ratios were calculated. The patients were randomly divided into training (n = 111) and validation (n = 47) groups at a ratio of 7:3. A nomogram was built based on univariate and multivariate logistic regression analyses in the training group and was verified in the validation group. The discriminatory and predictive capacities of the nomogram were assessed by the receiver operating characteristic curve and area under the curve (AUC). The AUC was compared by DeLong test.In the training group, univariate analysis showed that age, lesion diameter, menopausal status, ADC, T2pre, PDpre, PDGd, T2Delta, and T2ratio were significantly different between benign and malignant breast lesions (P < 0.05). Multivariate logistic regression analysis showed that ADC and T2pre were significant variables (all P < 0.05) in breast cancer diagnosis. The quantitative model (model A: ADC, T2pre), BI-RADS model (model B), and multi-parameter model (model C: ADC, T2pre, BI-RADS) were established by combining the above independent variables, among which model C had the highest diagnostic performance, with AUC of 0.965 and 0.986 in the training and validation groups, respectively.The prediction model established based on syMRI, MUSE sequence, and BI-RADS is helpful for clinical differentiation of breast tumors and provides more accurate information for individualized diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Lucas应助Champion采纳,获得10
1秒前
有个女孩叫阿娇完成签到,获得积分10
1秒前
丰富以亦发布了新的文献求助10
2秒前
李爱国应助zzzz采纳,获得10
2秒前
xinxin0902应助研狗采纳,获得20
2秒前
2秒前
古人说发布了新的文献求助20
2秒前
yaya发布了新的文献求助10
3秒前
3秒前
Akim应助Atalent采纳,获得10
3秒前
英姑应助千衷采纳,获得10
3秒前
ppat5012完成签到,获得积分10
3秒前
美味肉蟹煲完成签到,获得积分10
4秒前
歪比巴卜发布了新的文献求助10
4秒前
4秒前
4秒前
DEF完成签到 ,获得积分10
4秒前
zero完成签到,获得积分10
4秒前
传奇3应助池林采纳,获得10
4秒前
钟馗完成签到,获得积分10
4秒前
搞科研的废废完成签到,获得积分10
4秒前
白板发布了新的文献求助20
4秒前
4秒前
5秒前
5秒前
酷波er应助温柔的戎采纳,获得10
5秒前
Duang完成签到,获得积分20
5秒前
5秒前
柒月发布了新的文献求助10
5秒前
5秒前
朴素友安完成签到 ,获得积分10
5秒前
5秒前
bkagyin应助Linming采纳,获得10
6秒前
饱满的煎饼完成签到,获得积分10
6秒前
8秒前
8秒前
8秒前
fff完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887