Synthetic MRI, multiplexed sensitivity encoding, and BI-RADS for benign and malignant breast cancer discrimination

乳腺癌 双雷达 灵敏度(控制系统) 医学 编码(内存) 癌症 癌症研究 肿瘤科 乳腺摄影术 放射科 内科学 计算机科学 人工智能 电子工程 工程类
作者
Jinrui Liu,Mengying Xu,Jialiang Ren,Zhihao Li,Xi Lu,Bing Chen
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:12 被引量:2
标识
DOI:10.3389/fonc.2022.1080580
摘要

To assess the diagnostic value of predictive models based on synthetic magnetic resonance imaging (syMRI), multiplexed sensitivity encoding (MUSE) sequences, and Breast Imaging Reporting and Data System (BI-RADS) in the differentiation of benign and malignant breast lesions.Clinical and MRI data of 158 patients with breast lesions who underwent dynamic contrast-enhanced MRI (DCE-MRI), syMRI, and MUSE sequences between September 2019 and December 2020 were retrospectively collected. The apparent diffusion coefficient (ADC) values of MUSE and quantitative relaxation parameters (longitudinal and transverse relaxation times [T1, T2], and proton density [PD] values) of syMRI were measured, and the parameter variation values and change in their ratios were calculated. The patients were randomly divided into training (n = 111) and validation (n = 47) groups at a ratio of 7:3. A nomogram was built based on univariate and multivariate logistic regression analyses in the training group and was verified in the validation group. The discriminatory and predictive capacities of the nomogram were assessed by the receiver operating characteristic curve and area under the curve (AUC). The AUC was compared by DeLong test.In the training group, univariate analysis showed that age, lesion diameter, menopausal status, ADC, T2pre, PDpre, PDGd, T2Delta, and T2ratio were significantly different between benign and malignant breast lesions (P < 0.05). Multivariate logistic regression analysis showed that ADC and T2pre were significant variables (all P < 0.05) in breast cancer diagnosis. The quantitative model (model A: ADC, T2pre), BI-RADS model (model B), and multi-parameter model (model C: ADC, T2pre, BI-RADS) were established by combining the above independent variables, among which model C had the highest diagnostic performance, with AUC of 0.965 and 0.986 in the training and validation groups, respectively.The prediction model established based on syMRI, MUSE sequence, and BI-RADS is helpful for clinical differentiation of breast tumors and provides more accurate information for individualized diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
翟显治发布了新的文献求助10
刚刚
lala完成签到,获得积分20
刚刚
HeAuBook发布了新的文献求助10
刚刚
honestyh完成签到,获得积分10
1秒前
1秒前
NexusExplorer应助麋鹿采纳,获得10
1秒前
ada发布了新的文献求助10
1秒前
1秒前
李爱国应助猫科动物采纳,获得10
2秒前
penghui发布了新的文献求助10
3秒前
3秒前
Crystal发布了新的文献求助10
4秒前
罗乔治完成签到,获得积分10
4秒前
tennisgirl完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
daodao发布了新的文献求助10
5秒前
赫若魔应助铎子采纳,获得10
5秒前
吴学仕发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助100
6秒前
思源应助谦让寄容采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
思源应助小三花妙妙采纳,获得10
8秒前
8秒前
8秒前
yangbinsci0827完成签到,获得积分10
8秒前
9秒前
臧为完成签到,获得积分10
9秒前
hhh完成签到,获得积分10
9秒前
木子李完成签到,获得积分10
9秒前
小夏发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885154
求助须知:如何正确求助?哪些是违规求助? 4170091
关于积分的说明 12940413
捐赠科研通 3930753
什么是DOI,文献DOI怎么找? 2156753
邀请新用户注册赠送积分活动 1175137
关于科研通互助平台的介绍 1079777