已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Amendable Multi-Function Control Method using Federated Learning for Smart Sensors in Agricultural Production Improvements

计算机科学 适应性 农业生产力 农业工程 生产力 实时计算 农业 工程类 生态学 生物 宏观经济学 经济
作者
Ahmed Abu‐Khadrah,Ali Mohd Ali,Muath Jarrah
出处
期刊:ACM Transactions on Sensor Networks [Association for Computing Machinery]
被引量:11
标识
DOI:10.1145/3582011
摘要

Communications and Computer Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan School of Information Technology, Skyline University, Sharjah, 1797, UAE Smart Sensors are used for monitoring, sensing, and actuating controls in small and large-scale agricultural plots. From soil features to crop health and climatic observations, the smart sensors integrate with sophisticated technologies such as the Internet of Things or cloud for decentralized processing and global actuation. Considering this integration, an Amendable Multi-Function Sensor Control (AMFSC) is introduced in this proposal. This proposed method focuses on sensor operations that aid agricultural production improvements. The agriculture hindering features from the soil, temperature, and crop infections are sensed and response is actuated based on controlled operations. The control operations are performed according to the sensor control validation and modified control acute sensor, which helps to maximize productivity. The sensor control and operations are determined using federated learning from the accumulated data in the previous sensing intervals. This learning validates the current sensor data with the optimal data stored for different crops and environmental factors in the past. Depending on the computed, sensed, and optimal (adaptable) data, the sensor operation for actuation is modified. This modification is recommended for crop and agriculture development to maximize agricultural productivity. In particular, the sensing and actuation operations of the smart sensors for different intervals are modified to maximize production and adaptability. The efficiency of the system was evaluated using different parameters and the system maximizes the analysis rate (12.52%), control rate (7%), adaptability (9.65%) and minimizes the analysis time (7.12%), and actuation lag (8.97%)

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风行域完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
爆米花应助友好谷蓝采纳,获得10
1秒前
西吴完成签到 ,获得积分10
1秒前
焰古完成签到 ,获得积分10
1秒前
无情的问枫完成签到 ,获得积分10
1秒前
涵涵涵hh完成签到 ,获得积分10
2秒前
lijunliang完成签到,获得积分10
3秒前
hh1106完成签到 ,获得积分20
3秒前
3秒前
minkeyantong完成签到 ,获得积分10
3秒前
3秒前
kkpzc完成签到 ,获得积分10
5秒前
粗犷的灵松完成签到,获得积分10
5秒前
无极微光应助开朗的lala采纳,获得20
5秒前
6秒前
yangjian完成签到,获得积分10
6秒前
洁净的小熊猫完成签到,获得积分10
6秒前
小方完成签到,获得积分10
7秒前
毛爱民发布了新的文献求助10
8秒前
激昂的吐司完成签到,获得积分20
10秒前
11秒前
666发布了新的文献求助10
12秒前
科研小白完成签到 ,获得积分10
17秒前
王者归来完成签到,获得积分10
17秒前
薄荷源星球完成签到 ,获得积分10
17秒前
cangmingzi完成签到,获得积分10
19秒前
酷波er应助激昂的吐司采纳,获得20
20秒前
ZHL应助Bellis采纳,获得20
21秒前
奋斗的绝悟完成签到,获得积分10
21秒前
自信书竹完成签到 ,获得积分10
21秒前
wanci应助可可钳采纳,获得10
22秒前
美丽的若云完成签到 ,获得积分10
25秒前
26秒前
26秒前
li完成签到 ,获得积分10
28秒前
一粟完成签到 ,获得积分10
28秒前
29秒前
oleskarabach发布了新的文献求助10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663937
求助须知:如何正确求助?哪些是违规求助? 4854696
关于积分的说明 15106497
捐赠科研通 4822285
什么是DOI,文献DOI怎么找? 2581341
邀请新用户注册赠送积分活动 1535521
关于科研通互助平台的介绍 1493759