An Amendable Multi-Function Control Method using Federated Learning for Smart Sensors in Agricultural Production Improvements

计算机科学 适应性 农业生产力 农业工程 生产力 实时计算 农业 工程类 生态学 生物 宏观经济学 经济
作者
Ahmed Abu‐Khadrah,Ali Mohd Ali,Muath Jarrah
出处
期刊:ACM Transactions on Sensor Networks [Association for Computing Machinery]
被引量:11
标识
DOI:10.1145/3582011
摘要

Communications and Computer Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan School of Information Technology, Skyline University, Sharjah, 1797, UAE Smart Sensors are used for monitoring, sensing, and actuating controls in small and large-scale agricultural plots. From soil features to crop health and climatic observations, the smart sensors integrate with sophisticated technologies such as the Internet of Things or cloud for decentralized processing and global actuation. Considering this integration, an Amendable Multi-Function Sensor Control (AMFSC) is introduced in this proposal. This proposed method focuses on sensor operations that aid agricultural production improvements. The agriculture hindering features from the soil, temperature, and crop infections are sensed and response is actuated based on controlled operations. The control operations are performed according to the sensor control validation and modified control acute sensor, which helps to maximize productivity. The sensor control and operations are determined using federated learning from the accumulated data in the previous sensing intervals. This learning validates the current sensor data with the optimal data stored for different crops and environmental factors in the past. Depending on the computed, sensed, and optimal (adaptable) data, the sensor operation for actuation is modified. This modification is recommended for crop and agriculture development to maximize agricultural productivity. In particular, the sensing and actuation operations of the smart sensors for different intervals are modified to maximize production and adaptability. The efficiency of the system was evaluated using different parameters and the system maximizes the analysis rate (12.52%), control rate (7%), adaptability (9.65%) and minimizes the analysis time (7.12%), and actuation lag (8.97%)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海潮发布了新的文献求助10
1秒前
鄂成危发布了新的文献求助10
3秒前
出头天完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
6秒前
缓慢的伟祺完成签到,获得积分10
8秒前
8秒前
KYDL发布了新的文献求助10
8秒前
sy发布了新的文献求助10
9秒前
9秒前
杨tong发布了新的文献求助10
12秒前
13秒前
Daniel完成签到,获得积分10
13秒前
gujianhua发布了新的文献求助10
15秒前
16秒前
renovel发布了新的文献求助10
16秒前
KYDL完成签到,获得积分20
17秒前
oky发布了新的文献求助10
18秒前
19秒前
19秒前
鄂成危发布了新的文献求助10
21秒前
realha完成签到,获得积分10
21秒前
美丽依波发布了新的文献求助30
22秒前
大白发布了新的文献求助10
22秒前
22秒前
情怀应助无敌龙傲天采纳,获得10
23秒前
哒哒发布了新的文献求助10
23秒前
Oo发布了新的文献求助10
24秒前
realha发布了新的文献求助10
24秒前
25秒前
26秒前
磷酸果糖完成签到,获得积分10
28秒前
成成完成签到,获得积分10
28秒前
Wacky完成签到,获得积分10
28秒前
29秒前
Wacky发布了新的文献求助10
31秒前
31秒前
32秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157455
求助须知:如何正确求助?哪些是违规求助? 2808877
关于积分的说明 7878686
捐赠科研通 2467233
什么是DOI,文献DOI怎么找? 1313279
科研通“疑难数据库(出版商)”最低求助积分说明 630380
版权声明 601919