An Amendable Multi-Function Control Method using Federated Learning for Smart Sensors in Agricultural Production Improvements

计算机科学 适应性 农业生产力 农业工程 生产力 实时计算 农业 工程类 生态学 生物 宏观经济学 经济
作者
Ahmed Abu‐Khadrah,Ali Mohd Ali,Muath Jarrah
出处
期刊:ACM Transactions on Sensor Networks [Association for Computing Machinery]
被引量:11
标识
DOI:10.1145/3582011
摘要

Communications and Computer Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan School of Information Technology, Skyline University, Sharjah, 1797, UAE Smart Sensors are used for monitoring, sensing, and actuating controls in small and large-scale agricultural plots. From soil features to crop health and climatic observations, the smart sensors integrate with sophisticated technologies such as the Internet of Things or cloud for decentralized processing and global actuation. Considering this integration, an Amendable Multi-Function Sensor Control (AMFSC) is introduced in this proposal. This proposed method focuses on sensor operations that aid agricultural production improvements. The agriculture hindering features from the soil, temperature, and crop infections are sensed and response is actuated based on controlled operations. The control operations are performed according to the sensor control validation and modified control acute sensor, which helps to maximize productivity. The sensor control and operations are determined using federated learning from the accumulated data in the previous sensing intervals. This learning validates the current sensor data with the optimal data stored for different crops and environmental factors in the past. Depending on the computed, sensed, and optimal (adaptable) data, the sensor operation for actuation is modified. This modification is recommended for crop and agriculture development to maximize agricultural productivity. In particular, the sensing and actuation operations of the smart sensors for different intervals are modified to maximize production and adaptability. The efficiency of the system was evaluated using different parameters and the system maximizes the analysis rate (12.52%), control rate (7%), adaptability (9.65%) and minimizes the analysis time (7.12%), and actuation lag (8.97%)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芜6完成签到,获得积分10
1秒前
berkelerey12138完成签到,获得积分10
1秒前
刘雪完成签到 ,获得积分10
2秒前
完美梨愁完成签到 ,获得积分10
2秒前
yyy完成签到,获得积分10
2秒前
李健的粉丝团团长应助zzzz采纳,获得10
3秒前
Dudidu完成签到,获得积分10
3秒前
一颗大树完成签到,获得积分10
4秒前
潇洒的浩然完成签到,获得积分10
5秒前
比比谁的速度快应助曾珍采纳,获得50
5秒前
7秒前
NiNi完成签到,获得积分10
8秒前
Ther完成签到,获得积分20
9秒前
傲娇白安完成签到,获得积分10
10秒前
10秒前
甜蜜的荟完成签到,获得积分20
11秒前
婷儿完成签到,获得积分10
11秒前
牛牛发布了新的文献求助10
11秒前
Hoper完成签到,获得积分10
11秒前
张曰淼完成签到,获得积分10
12秒前
共渡完成签到,获得积分10
14秒前
凉白开完成签到 ,获得积分10
15秒前
跳跃的太君完成签到,获得积分10
16秒前
小猪发布了新的文献求助10
16秒前
独特问夏完成签到,获得积分10
17秒前
17秒前
18秒前
魔幻蓉完成签到,获得积分10
18秒前
杠赛来完成签到,获得积分10
18秒前
ccy完成签到 ,获得积分10
19秒前
Ch185完成签到,获得积分10
20秒前
欣喜的复天完成签到,获得积分10
22秒前
摸鱼校尉完成签到,获得积分0
22秒前
双儿完成签到,获得积分10
22秒前
顺利毕业完成签到 ,获得积分10
22秒前
儒雅的焦完成签到 ,获得积分10
22秒前
小何完成签到 ,获得积分10
22秒前
24秒前
25秒前
小曾应助张绪帆采纳,获得10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029