An Amendable Multi-Function Control Method using Federated Learning for Smart Sensors in Agricultural Production Improvements

计算机科学 适应性 农业生产力 农业工程 生产力 实时计算 农业 工程类 生态学 生物 宏观经济学 经济
作者
Ahmed Abu‐Khadrah,Ali Mohd Ali,Muath Jarrah
出处
期刊:ACM Transactions on Sensor Networks [Association for Computing Machinery]
被引量:11
标识
DOI:10.1145/3582011
摘要

Communications and Computer Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan School of Information Technology, Skyline University, Sharjah, 1797, UAE Smart Sensors are used for monitoring, sensing, and actuating controls in small and large-scale agricultural plots. From soil features to crop health and climatic observations, the smart sensors integrate with sophisticated technologies such as the Internet of Things or cloud for decentralized processing and global actuation. Considering this integration, an Amendable Multi-Function Sensor Control (AMFSC) is introduced in this proposal. This proposed method focuses on sensor operations that aid agricultural production improvements. The agriculture hindering features from the soil, temperature, and crop infections are sensed and response is actuated based on controlled operations. The control operations are performed according to the sensor control validation and modified control acute sensor, which helps to maximize productivity. The sensor control and operations are determined using federated learning from the accumulated data in the previous sensing intervals. This learning validates the current sensor data with the optimal data stored for different crops and environmental factors in the past. Depending on the computed, sensed, and optimal (adaptable) data, the sensor operation for actuation is modified. This modification is recommended for crop and agriculture development to maximize agricultural productivity. In particular, the sensing and actuation operations of the smart sensors for different intervals are modified to maximize production and adaptability. The efficiency of the system was evaluated using different parameters and the system maximizes the analysis rate (12.52%), control rate (7%), adaptability (9.65%) and minimizes the analysis time (7.12%), and actuation lag (8.97%)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zikncy发布了新的文献求助30
刚刚
刚刚
刚刚
冬雪完成签到,获得积分10
1秒前
asd发布了新的文献求助10
1秒前
1秒前
1秒前
小马发布了新的文献求助10
1秒前
1秒前
3秒前
3秒前
zzy发布了新的文献求助10
3秒前
追寻夜安完成签到,获得积分20
3秒前
棉花糖小朋友完成签到,获得积分10
4秒前
俊逸成危完成签到,获得积分20
4秒前
水流众生完成签到 ,获得积分10
4秒前
5秒前
5秒前
孙伟泰完成签到 ,获得积分10
5秒前
客念完成签到 ,获得积分10
6秒前
6秒前
何晶晶完成签到 ,获得积分10
6秒前
6秒前
汉堡包应助sun采纳,获得10
7秒前
7秒前
诚心的月光完成签到,获得积分10
7秒前
8秒前
平蕉完成签到,获得积分10
8秒前
太阳发布了新的文献求助30
9秒前
asd完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
wzw完成签到,获得积分10
10秒前
研友_LkY7BZ完成签到,获得积分10
11秒前
gugu发布了新的文献求助10
11秒前
脚啊啊啊完成签到,获得积分10
11秒前
lele完成签到,获得积分10
12秒前
Mona发布了新的文献求助30
12秒前
冷傲的青曼完成签到,获得积分20
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009905
求助须知:如何正确求助?哪些是违规求助? 3549896
关于积分的说明 11304149
捐赠科研通 3284441
什么是DOI,文献DOI怎么找? 1810658
邀请新用户注册赠送积分活动 886424
科研通“疑难数据库(出版商)”最低求助积分说明 811406