An Amendable Multi-Function Control Method using Federated Learning for Smart Sensors in Agricultural Production Improvements

计算机科学 适应性 农业生产力 农业工程 生产力 实时计算 农业 工程类 生态学 生物 宏观经济学 经济
作者
Ahmed Abu‐Khadrah,Ali Mohd Ali,Muath Jarrah
出处
期刊:ACM Transactions on Sensor Networks [Association for Computing Machinery]
被引量:11
标识
DOI:10.1145/3582011
摘要

Communications and Computer Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan School of Information Technology, Skyline University, Sharjah, 1797, UAE Smart Sensors are used for monitoring, sensing, and actuating controls in small and large-scale agricultural plots. From soil features to crop health and climatic observations, the smart sensors integrate with sophisticated technologies such as the Internet of Things or cloud for decentralized processing and global actuation. Considering this integration, an Amendable Multi-Function Sensor Control (AMFSC) is introduced in this proposal. This proposed method focuses on sensor operations that aid agricultural production improvements. The agriculture hindering features from the soil, temperature, and crop infections are sensed and response is actuated based on controlled operations. The control operations are performed according to the sensor control validation and modified control acute sensor, which helps to maximize productivity. The sensor control and operations are determined using federated learning from the accumulated data in the previous sensing intervals. This learning validates the current sensor data with the optimal data stored for different crops and environmental factors in the past. Depending on the computed, sensed, and optimal (adaptable) data, the sensor operation for actuation is modified. This modification is recommended for crop and agriculture development to maximize agricultural productivity. In particular, the sensing and actuation operations of the smart sensors for different intervals are modified to maximize production and adaptability. The efficiency of the system was evaluated using different parameters and the system maximizes the analysis rate (12.52%), control rate (7%), adaptability (9.65%) and minimizes the analysis time (7.12%), and actuation lag (8.97%)

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼初南发布了新的文献求助10
1秒前
简单勒发布了新的文献求助10
3秒前
3秒前
3秒前
shuyou完成签到,获得积分10
4秒前
领导范儿应助winstar采纳,获得10
4秒前
隐形曼青应助ytzhang0587采纳,获得10
4秒前
4秒前
yukeshou完成签到,获得积分10
6秒前
zly完成签到,获得积分10
6秒前
7秒前
打打应助123456采纳,获得10
8秒前
daicy发布了新的文献求助10
11秒前
呼初南完成签到 ,获得积分20
11秒前
12秒前
13秒前
13秒前
14秒前
丁鹏笑完成签到 ,获得积分0
14秒前
量子星尘发布了新的文献求助10
14秒前
热心采白完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
16秒前
刘丰铭发布了新的文献求助10
17秒前
韩笑发布了新的文献求助10
18秒前
123456发布了新的文献求助10
19秒前
Seek发布了新的文献求助50
20秒前
Liurthis关注了科研通微信公众号
20秒前
热心采白关注了科研通微信公众号
20秒前
Log发布了新的文献求助10
20秒前
luis应助科研通管家采纳,获得10
21秒前
wy.he应助科研通管家采纳,获得10
21秒前
一一应助科研通管家采纳,获得20
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
21秒前
tuanheqi应助科研通管家采纳,获得150
21秒前
21秒前
21秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610157
求助须知:如何正确求助?哪些是违规求助? 4694672
关于积分的说明 14883860
捐赠科研通 4721346
什么是DOI,文献DOI怎么找? 2545014
邀请新用户注册赠送积分活动 1509927
关于科研通互助平台的介绍 1473039