An Amendable Multi-Function Control Method using Federated Learning for Smart Sensors in Agricultural Production Improvements

计算机科学 适应性 农业生产力 农业工程 生产力 实时计算 农业 工程类 生态学 生物 宏观经济学 经济
作者
Ahmed Abu‐Khadrah,Ali Mohd Ali,Muath Jarrah
出处
期刊:ACM Transactions on Sensor Networks [Association for Computing Machinery]
被引量:11
标识
DOI:10.1145/3582011
摘要

Communications and Computer Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan School of Information Technology, Skyline University, Sharjah, 1797, UAE Smart Sensors are used for monitoring, sensing, and actuating controls in small and large-scale agricultural plots. From soil features to crop health and climatic observations, the smart sensors integrate with sophisticated technologies such as the Internet of Things or cloud for decentralized processing and global actuation. Considering this integration, an Amendable Multi-Function Sensor Control (AMFSC) is introduced in this proposal. This proposed method focuses on sensor operations that aid agricultural production improvements. The agriculture hindering features from the soil, temperature, and crop infections are sensed and response is actuated based on controlled operations. The control operations are performed according to the sensor control validation and modified control acute sensor, which helps to maximize productivity. The sensor control and operations are determined using federated learning from the accumulated data in the previous sensing intervals. This learning validates the current sensor data with the optimal data stored for different crops and environmental factors in the past. Depending on the computed, sensed, and optimal (adaptable) data, the sensor operation for actuation is modified. This modification is recommended for crop and agriculture development to maximize agricultural productivity. In particular, the sensing and actuation operations of the smart sensors for different intervals are modified to maximize production and adaptability. The efficiency of the system was evaluated using different parameters and the system maximizes the analysis rate (12.52%), control rate (7%), adaptability (9.65%) and minimizes the analysis time (7.12%), and actuation lag (8.97%)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果酸奶完成签到,获得积分10
1秒前
标致小伙发布了新的文献求助10
2秒前
2秒前
2秒前
科研民工发布了新的文献求助10
2秒前
Owen应助sun采纳,获得10
2秒前
handsomecat发布了新的文献求助10
2秒前
乐乐关注了科研通微信公众号
2秒前
2秒前
Kriemhild完成签到,获得积分10
3秒前
dz完成签到,获得积分10
3秒前
小可发布了新的文献求助10
3秒前
夜雨声烦完成签到,获得积分10
3秒前
MrCoolWu发布了新的文献求助10
3秒前
过时的不评完成签到,获得积分10
4秒前
4秒前
4秒前
月儿发布了新的文献求助10
5秒前
落落完成签到 ,获得积分10
5秒前
羊羊完成签到 ,获得积分20
5秒前
宁听白发布了新的文献求助10
6秒前
rookie_b0完成签到,获得积分10
6秒前
6秒前
wangyanyan完成签到,获得积分20
6秒前
标致小伙完成签到,获得积分10
7秒前
7秒前
Harlotte发布了新的文献求助10
8秒前
8秒前
潦草发布了新的文献求助10
8秒前
丘比特应助Ll采纳,获得10
9秒前
9秒前
yu完成签到 ,获得积分10
9秒前
小蘑菇应助zzznznnn采纳,获得10
9秒前
Orange应助俊秀的白猫采纳,获得30
10秒前
深情安青应助小可采纳,获得10
10秒前
10秒前
情怀应助pearl采纳,获得10
10秒前
11秒前
所所应助cybbbbbb采纳,获得10
11秒前
果汁发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759