亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Amendable Multi-Function Control Method using Federated Learning for Smart Sensors in Agricultural Production Improvements

计算机科学 适应性 农业生产力 农业工程 生产力 实时计算 农业 工程类 生态学 生物 宏观经济学 经济
作者
Ahmed Abu‐Khadrah,Ali Mohd Ali,Muath Jarrah
出处
期刊:ACM Transactions on Sensor Networks [Association for Computing Machinery]
被引量:11
标识
DOI:10.1145/3582011
摘要

Communications and Computer Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan School of Information Technology, Skyline University, Sharjah, 1797, UAE Smart Sensors are used for monitoring, sensing, and actuating controls in small and large-scale agricultural plots. From soil features to crop health and climatic observations, the smart sensors integrate with sophisticated technologies such as the Internet of Things or cloud for decentralized processing and global actuation. Considering this integration, an Amendable Multi-Function Sensor Control (AMFSC) is introduced in this proposal. This proposed method focuses on sensor operations that aid agricultural production improvements. The agriculture hindering features from the soil, temperature, and crop infections are sensed and response is actuated based on controlled operations. The control operations are performed according to the sensor control validation and modified control acute sensor, which helps to maximize productivity. The sensor control and operations are determined using federated learning from the accumulated data in the previous sensing intervals. This learning validates the current sensor data with the optimal data stored for different crops and environmental factors in the past. Depending on the computed, sensed, and optimal (adaptable) data, the sensor operation for actuation is modified. This modification is recommended for crop and agriculture development to maximize agricultural productivity. In particular, the sensing and actuation operations of the smart sensors for different intervals are modified to maximize production and adaptability. The efficiency of the system was evaluated using different parameters and the system maximizes the analysis rate (12.52%), control rate (7%), adaptability (9.65%) and minimizes the analysis time (7.12%), and actuation lag (8.97%)

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
23秒前
胖小羊完成签到 ,获得积分10
38秒前
39秒前
采薇发布了新的文献求助10
46秒前
Utopia1632完成签到,获得积分10
1分钟前
小鸡完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
知悉发布了新的文献求助10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
三岁应助ceeray23采纳,获得20
1分钟前
2分钟前
oleskarabach发布了新的文献求助10
2分钟前
zly完成签到 ,获得积分0
2分钟前
Nilnael发布了新的文献求助10
2分钟前
浮游应助ceeray23采纳,获得20
2分钟前
HaCat完成签到,获得积分10
2分钟前
2分钟前
2分钟前
采薇发布了新的文献求助10
2分钟前
yuan完成签到,获得积分10
2分钟前
小蘑菇应助jing采纳,获得10
2分钟前
搜集达人应助Luke采纳,获得10
2分钟前
3分钟前
3分钟前
jing发布了新的文献求助10
3分钟前
Demi_Ming完成签到,获得积分10
3分钟前
程小柒完成签到 ,获得积分10
3分钟前
Demi_Ming关注了科研通微信公众号
3分钟前
烟花应助科研通管家采纳,获得10
3分钟前
坚强的秋白完成签到,获得积分10
4分钟前
xiawanren00完成签到,获得积分10
5分钟前
5分钟前
采薇发布了新的文献求助10
5分钟前
Jasper应助科研通管家采纳,获得10
5分钟前
无极微光应助科研通管家采纳,获得20
5分钟前
任性云朵完成签到 ,获得积分10
6分钟前
大模型应助jing采纳,获得10
6分钟前
6分钟前
奋斗一刀完成签到,获得积分20
6分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644846
求助须知:如何正确求助?哪些是违规求助? 4765929
关于积分的说明 15025735
捐赠科研通 4803180
什么是DOI,文献DOI怎么找? 2568067
邀请新用户注册赠送积分活动 1525533
关于科研通互助平台的介绍 1485079