An Amendable Multi-Function Control Method using Federated Learning for Smart Sensors in Agricultural Production Improvements

计算机科学 适应性 农业生产力 农业工程 生产力 实时计算 农业 工程类 生态学 生物 宏观经济学 经济
作者
Ahmed Abu‐Khadrah,Ali Mohd Ali,Muath Jarrah
出处
期刊:ACM Transactions on Sensor Networks [Association for Computing Machinery]
被引量:11
标识
DOI:10.1145/3582011
摘要

Communications and Computer Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan School of Information Technology, Skyline University, Sharjah, 1797, UAE Smart Sensors are used for monitoring, sensing, and actuating controls in small and large-scale agricultural plots. From soil features to crop health and climatic observations, the smart sensors integrate with sophisticated technologies such as the Internet of Things or cloud for decentralized processing and global actuation. Considering this integration, an Amendable Multi-Function Sensor Control (AMFSC) is introduced in this proposal. This proposed method focuses on sensor operations that aid agricultural production improvements. The agriculture hindering features from the soil, temperature, and crop infections are sensed and response is actuated based on controlled operations. The control operations are performed according to the sensor control validation and modified control acute sensor, which helps to maximize productivity. The sensor control and operations are determined using federated learning from the accumulated data in the previous sensing intervals. This learning validates the current sensor data with the optimal data stored for different crops and environmental factors in the past. Depending on the computed, sensed, and optimal (adaptable) data, the sensor operation for actuation is modified. This modification is recommended for crop and agriculture development to maximize agricultural productivity. In particular, the sensing and actuation operations of the smart sensors for different intervals are modified to maximize production and adaptability. The efficiency of the system was evaluated using different parameters and the system maximizes the analysis rate (12.52%), control rate (7%), adaptability (9.65%) and minimizes the analysis time (7.12%), and actuation lag (8.97%)

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
静静在学呢完成签到,获得积分10
1秒前
2秒前
afterglow完成签到 ,获得积分10
2秒前
小慧儿发布了新的文献求助10
2秒前
SciGPT应助pearlwh1227采纳,获得10
3秒前
热爱学术的蓝色大尾巴鱼完成签到,获得积分10
3秒前
缥缈八宝粥完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
十三完成签到 ,获得积分10
5秒前
5秒前
给我点光环完成签到,获得积分10
6秒前
月yue发布了新的文献求助10
7秒前
Artorias发布了新的文献求助20
7秒前
7秒前
Wang完成签到,获得积分10
7秒前
8秒前
caiia完成签到,获得积分10
8秒前
迟歌完成签到,获得积分10
8秒前
Son4904发布了新的文献求助30
8秒前
Genius发布了新的文献求助10
9秒前
9秒前
10秒前
ltupup完成签到 ,获得积分10
10秒前
秀丽的盈发布了新的文献求助10
11秒前
11秒前
情怀应助大胆易巧采纳,获得10
12秒前
12秒前
13秒前
13秒前
海绵宝宝发布了新的文献求助10
14秒前
云蓝完成签到 ,获得积分10
14秒前
迟歌发布了新的文献求助10
15秒前
lagom发布了新的文献求助10
15秒前
15秒前
妮儿完成签到,获得积分10
16秒前
17秒前
坦率灵槐应助123采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648780
求助须知:如何正确求助?哪些是违规求助? 4776351
关于积分的说明 15045465
捐赠科研通 4807646
什么是DOI,文献DOI怎么找? 2571009
邀请新用户注册赠送积分活动 1527687
关于科研通互助平台的介绍 1486590