注释
推论
基因组
生物
基因
计算生物学
基因选择
可扩展性
基因组学
基因注释
比较基因组学
基因预测
遗传学
计算机科学
人工智能
数据库
基因表达
微阵列分析技术
作者
Bogdan Kirilenko,Chetan Munegowda,Ekaterina Osipova,David Jebb,Virag Sharma,Moritz Blumer,Ariadna E. Morales,Alexis-Walid Ahmed,Dimitrios ‐ Georgios Kontopoulos,Leon Hilgers,Kerstin Lindblad‐Toh,Elinor K. Karlsson,Michael Hiller
标识
DOI:10.1101/2022.09.08.507143
摘要
Abstract Annotating coding genes and inferring orthologs are two classical challenges in genomics and evolutionary biology that have traditionally been approached separately, limiting scalability. We present TOGA, a method that integrates structural gene annotation and orthology inference. TOGA implements a different paradigm to infer orthologous loci, improves ortholog detection and annotation of conserved genes compared to state-of-the-art methods, and handles even highly-fragmented assemblies. TOGA scales to hundreds of genomes, which we demonstrate by applying it to 488 placental mammal and 501 bird assemblies, creating the largest comparative gene resources so far. Additionally, TOGA detects gene losses, enables selection screens, and automatically provides a superior measure of mammalian genome quality. Together, TOGA is a powerful and scalable method to annotate and compare genes in the genomic era.
科研通智能强力驱动
Strongly Powered by AbleSci AI