Evaluation of Multi-layer Perceptron Neural Networks in Predicting Ankle Dorsiflexion in Healthy Adults using Movement-related Cortical Potentials for BCI-Neurofeedback Applications

脑-机接口 计算机科学 神经反射 感知器 脑电图 人工神经网络 多层感知器 人工智能 机器学习 心理学 神经科学
作者
Ahad Behboodi,Walker A. Lee,Thomas C. Bulea,Diane L. Damiano
标识
DOI:10.1109/icorr55369.2022.9896584
摘要

Brain computer interface (BCI) systems were initially developed to replace lost function; however, they are being increasingly utilized in rehabilitation to restore motor functioning after brain injury. In such BCI-mediated neurofeedback training (BCI-NFT), the brain-state associated with movement attempt or intention is used to activate an external device which assists the movement while providing sensory feedback to enhance neuroplasticity. A critical element in the success of BCI-NFT is accurate timing of the feedback within the active period of the brain state. The overarching goal of this work was to develop a reliable deep learning model that can predict motion before its onset, and thereby deliver the sensory stimuli in a timely manner for BCI-NFT applications. To this end, the main objective of the current study was to design and evaluate a Multi-layer Perceptron Neural Network (MLP-NN). Movement-related cortical potentials (MRCP) during planning and execution of ankle dorsiflexion was used to train the model to classify dorsiflexion planning vs. rest. The accuracy and reliability of the model was evaluated offline using data from eight healthy individuals (age: 26.3 ± 7.6 years). First, we evaluated three different epoching strategies for defining our 2 classes, to identify the one which best discriminated rest from dorsiflexion. The best model accuracy for predicting ankle dorsiflexion from EEG before movement execution was 84.7%. Second, the effect of various spatial filters on the model accuracy was evaluated, demonstrating that the spatial filtering had minimal effect on model accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Majiko完成签到,获得积分10
1秒前
孟令松发布了新的文献求助10
1秒前
1秒前
搜集达人应助曾阿牛采纳,获得10
1秒前
1秒前
GPTea应助彳亍采纳,获得20
1秒前
量子星尘发布了新的文献求助10
1秒前
BoBo发布了新的文献求助10
2秒前
文静的匪完成签到 ,获得积分10
2秒前
王肖宁完成签到 ,获得积分10
5秒前
冲冲小将发布了新的文献求助20
6秒前
恰你眉目如昨完成签到 ,获得积分0
7秒前
平常幼菱发布了新的文献求助10
7秒前
9秒前
活力听白完成签到,获得积分10
9秒前
11秒前
三点发布了新的文献求助20
11秒前
11秒前
淡淡一手给淡淡一手的求助进行了留言
11秒前
科研通AI6应助蓝兰采纳,获得10
11秒前
所所应助学术小混子采纳,获得10
11秒前
现代书雪完成签到,获得积分20
11秒前
12秒前
zhou完成签到,获得积分10
14秒前
LUCK发布了新的文献求助30
14秒前
15秒前
活力听白发布了新的文献求助150
15秒前
O基米德发布了新的文献求助10
17秒前
17秒前
上官若男应助萱萱采纳,获得10
17秒前
18秒前
迅速的完成签到 ,获得积分10
18秒前
冲冲小将发布了新的文献求助10
19秒前
平常幼菱完成签到,获得积分10
19秒前
情怀应助飞飞飞飞飞飞采纳,获得10
20秒前
bkagyin应助孝顺的孤晴采纳,获得10
22秒前
霍云云完成签到,获得积分10
22秒前
22秒前
领导范儿应助lzw采纳,获得10
22秒前
谢灵运发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4887640
求助须知:如何正确求助?哪些是违规求助? 4172488
关于积分的说明 12949193
捐赠科研通 3933203
什么是DOI,文献DOI怎么找? 2158144
邀请新用户注册赠送积分活动 1176528
关于科研通互助平台的介绍 1080791