Evaluation of Multi-layer Perceptron Neural Networks in Predicting Ankle Dorsiflexion in Healthy Adults using Movement-related Cortical Potentials for BCI-Neurofeedback Applications

脑-机接口 计算机科学 神经反射 感知器 脑电图 人工神经网络 多层感知器 人工智能 机器学习 心理学 神经科学
作者
Ahad Behboodi,Walker A. Lee,Thomas C. Bulea,Diane L. Damiano
标识
DOI:10.1109/icorr55369.2022.9896584
摘要

Brain computer interface (BCI) systems were initially developed to replace lost function; however, they are being increasingly utilized in rehabilitation to restore motor functioning after brain injury. In such BCI-mediated neurofeedback training (BCI-NFT), the brain-state associated with movement attempt or intention is used to activate an external device which assists the movement while providing sensory feedback to enhance neuroplasticity. A critical element in the success of BCI-NFT is accurate timing of the feedback within the active period of the brain state. The overarching goal of this work was to develop a reliable deep learning model that can predict motion before its onset, and thereby deliver the sensory stimuli in a timely manner for BCI-NFT applications. To this end, the main objective of the current study was to design and evaluate a Multi-layer Perceptron Neural Network (MLP-NN). Movement-related cortical potentials (MRCP) during planning and execution of ankle dorsiflexion was used to train the model to classify dorsiflexion planning vs. rest. The accuracy and reliability of the model was evaluated offline using data from eight healthy individuals (age: 26.3 ± 7.6 years). First, we evaluated three different epoching strategies for defining our 2 classes, to identify the one which best discriminated rest from dorsiflexion. The best model accuracy for predicting ankle dorsiflexion from EEG before movement execution was 84.7%. Second, the effect of various spatial filters on the model accuracy was evaluated, demonstrating that the spatial filtering had minimal effect on model accuracy and reliability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
睡眠不足中完成签到 ,获得积分10
1秒前
2秒前
从容的鱼发布了新的文献求助10
2秒前
2秒前
Vivienne发布了新的文献求助10
3秒前
黄辉冯完成签到,获得积分10
5秒前
柚子完成签到 ,获得积分10
6秒前
小申完成签到,获得积分10
7秒前
7秒前
忧心的不言完成签到,获得积分10
7秒前
风中的碧玉完成签到,获得积分10
8秒前
阿伦艾弗森完成签到,获得积分10
9秒前
科研通AI6.1应助Eden采纳,获得10
9秒前
tuanheqi应助Nara2021采纳,获得50
10秒前
宇文宛菡发布了新的文献求助10
10秒前
刻苦的黑米完成签到,获得积分10
12秒前
12秒前
Ya完成签到 ,获得积分10
13秒前
自觉海冬完成签到,获得积分10
14秒前
搜集达人应助飘逸鑫采纳,获得10
14秒前
16秒前
窗窗窗雨完成签到,获得积分10
16秒前
上官若男应助qigu采纳,获得10
17秒前
lu完成签到 ,获得积分20
17秒前
研友_ZzrNpZ完成签到,获得积分10
17秒前
1376完成签到 ,获得积分10
18秒前
绿豆土豆红豆完成签到 ,获得积分10
18秒前
19秒前
20秒前
zhechen完成签到,获得积分10
20秒前
21秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
JamesPei应助Yangon采纳,获得10
21秒前
花开花落花无悔完成签到 ,获得积分10
23秒前
23秒前
24秒前
JunHan完成签到,获得积分10
24秒前
lu关注了科研通微信公众号
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060