Evaluation of Multi-layer Perceptron Neural Networks in Predicting Ankle Dorsiflexion in Healthy Adults using Movement-related Cortical Potentials for BCI-Neurofeedback Applications

脑-机接口 计算机科学 神经反射 感知器 脑电图 人工神经网络 多层感知器 人工智能 机器学习 心理学 神经科学
作者
Ahad Behboodi,Walker A. Lee,Thomas C. Bulea,Diane L. Damiano
标识
DOI:10.1109/icorr55369.2022.9896584
摘要

Brain computer interface (BCI) systems were initially developed to replace lost function; however, they are being increasingly utilized in rehabilitation to restore motor functioning after brain injury. In such BCI-mediated neurofeedback training (BCI-NFT), the brain-state associated with movement attempt or intention is used to activate an external device which assists the movement while providing sensory feedback to enhance neuroplasticity. A critical element in the success of BCI-NFT is accurate timing of the feedback within the active period of the brain state. The overarching goal of this work was to develop a reliable deep learning model that can predict motion before its onset, and thereby deliver the sensory stimuli in a timely manner for BCI-NFT applications. To this end, the main objective of the current study was to design and evaluate a Multi-layer Perceptron Neural Network (MLP-NN). Movement-related cortical potentials (MRCP) during planning and execution of ankle dorsiflexion was used to train the model to classify dorsiflexion planning vs. rest. The accuracy and reliability of the model was evaluated offline using data from eight healthy individuals (age: 26.3 ± 7.6 years). First, we evaluated three different epoching strategies for defining our 2 classes, to identify the one which best discriminated rest from dorsiflexion. The best model accuracy for predicting ankle dorsiflexion from EEG before movement execution was 84.7%. Second, the effect of various spatial filters on the model accuracy was evaluated, demonstrating that the spatial filtering had minimal effect on model accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖豆完成签到,获得积分10
1秒前
1秒前
通~发布了新的文献求助10
1秒前
einuo发布了新的文献求助10
1秒前
tgd完成签到,获得积分10
1秒前
1秒前
xiuxiu_27发布了新的文献求助10
1秒前
科研通AI5应助zzznznnn采纳,获得10
1秒前
lidm完成签到,获得积分10
1秒前
小赟完成签到,获得积分10
2秒前
2秒前
yyf发布了新的文献求助10
2秒前
南佳完成签到,获得积分20
3秒前
3秒前
一一完成签到,获得积分10
3秒前
3秒前
4秒前
韭菜盒子发布了新的文献求助10
4秒前
4秒前
4秒前
Cochane发布了新的文献求助10
5秒前
monday完成签到,获得积分10
5秒前
sunnyhhh完成签到,获得积分10
5秒前
aaa完成签到,获得积分10
5秒前
5秒前
5秒前
勿庸发布了新的文献求助10
6秒前
犹豫的忆梅完成签到,获得积分10
6秒前
6秒前
周助完成签到,获得积分10
6秒前
jack1511完成签到,获得积分20
6秒前
敏感初露完成签到,获得积分10
7秒前
冯冯完成签到 ,获得积分10
7秒前
科研通AI5应助落寞的紫山采纳,获得10
7秒前
gaos发布了新的文献求助10
7秒前
嘻嘻完成签到,获得积分10
7秒前
脑洞疼应助哈哈采纳,获得10
7秒前
Yfvonne完成签到,获得积分10
8秒前
蕾蕾不爱科研完成签到,获得积分10
8秒前
苹果南烟完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740