Evaluation of Multi-layer Perceptron Neural Networks in Predicting Ankle Dorsiflexion in Healthy Adults using Movement-related Cortical Potentials for BCI-Neurofeedback Applications

脑-机接口 计算机科学 神经反射 感知器 脑电图 人工神经网络 多层感知器 人工智能 机器学习 心理学 神经科学
作者
Ahad Behboodi,Walker A. Lee,Thomas C. Bulea,Diane L. Damiano
标识
DOI:10.1109/icorr55369.2022.9896584
摘要

Brain computer interface (BCI) systems were initially developed to replace lost function; however, they are being increasingly utilized in rehabilitation to restore motor functioning after brain injury. In such BCI-mediated neurofeedback training (BCI-NFT), the brain-state associated with movement attempt or intention is used to activate an external device which assists the movement while providing sensory feedback to enhance neuroplasticity. A critical element in the success of BCI-NFT is accurate timing of the feedback within the active period of the brain state. The overarching goal of this work was to develop a reliable deep learning model that can predict motion before its onset, and thereby deliver the sensory stimuli in a timely manner for BCI-NFT applications. To this end, the main objective of the current study was to design and evaluate a Multi-layer Perceptron Neural Network (MLP-NN). Movement-related cortical potentials (MRCP) during planning and execution of ankle dorsiflexion was used to train the model to classify dorsiflexion planning vs. rest. The accuracy and reliability of the model was evaluated offline using data from eight healthy individuals (age: 26.3 ± 7.6 years). First, we evaluated three different epoching strategies for defining our 2 classes, to identify the one which best discriminated rest from dorsiflexion. The best model accuracy for predicting ankle dorsiflexion from EEG before movement execution was 84.7%. Second, the effect of various spatial filters on the model accuracy was evaluated, demonstrating that the spatial filtering had minimal effect on model accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
???完成签到,获得积分10
刚刚
asd发布了新的文献求助10
1秒前
慕青应助搞怪慕凝采纳,获得10
1秒前
1秒前
benben发布了新的文献求助30
2秒前
超级迎夏完成签到 ,获得积分10
2秒前
英俊的铭应助红细胞采纳,获得10
3秒前
化学之星发布了新的文献求助10
5秒前
null_完成签到 ,获得积分10
5秒前
刘大米发布了新的文献求助10
7秒前
7秒前
新青年完成签到,获得积分0
8秒前
QP发布了新的文献求助10
8秒前
SciGPT应助Lin采纳,获得10
9秒前
弄青莲完成签到 ,获得积分10
10秒前
10秒前
priss111应助hh采纳,获得30
11秒前
思源应助小陈科研采纳,获得10
11秒前
11秒前
12秒前
basket完成签到 ,获得积分10
12秒前
Lvhao应助huhdcid采纳,获得30
13秒前
搞怪慕凝发布了新的文献求助10
13秒前
Xiaojiu完成签到,获得积分20
14秒前
14秒前
化学之星完成签到,获得积分10
15秒前
芳芳反复发布了新的文献求助10
15秒前
16秒前
JY完成签到 ,获得积分10
16秒前
红细胞发布了新的文献求助10
17秒前
YY发布了新的文献求助10
17秒前
QP完成签到,获得积分10
19秒前
19秒前
Lin发布了新的文献求助10
22秒前
22秒前
炙热的豆芽完成签到,获得积分10
23秒前
null_发布了新的文献求助20
23秒前
夏娜世尊完成签到 ,获得积分10
25秒前
功不唐捐完成签到,获得积分10
25秒前
桐桐应助zhangjianing采纳,获得10
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155702
求助须知:如何正确求助?哪些是违规求助? 2806955
关于积分的说明 7871128
捐赠科研通 2465170
什么是DOI,文献DOI怎么找? 1312168
科研通“疑难数据库(出版商)”最低求助积分说明 629928
版权声明 601892