Evaluation of Multi-layer Perceptron Neural Networks in Predicting Ankle Dorsiflexion in Healthy Adults using Movement-related Cortical Potentials for BCI-Neurofeedback Applications

脑-机接口 计算机科学 神经反射 感知器 脑电图 人工神经网络 多层感知器 人工智能 机器学习 心理学 神经科学
作者
Ahad Behboodi,Walker A. Lee,Thomas C. Bulea,Diane L. Damiano
标识
DOI:10.1109/icorr55369.2022.9896584
摘要

Brain computer interface (BCI) systems were initially developed to replace lost function; however, they are being increasingly utilized in rehabilitation to restore motor functioning after brain injury. In such BCI-mediated neurofeedback training (BCI-NFT), the brain-state associated with movement attempt or intention is used to activate an external device which assists the movement while providing sensory feedback to enhance neuroplasticity. A critical element in the success of BCI-NFT is accurate timing of the feedback within the active period of the brain state. The overarching goal of this work was to develop a reliable deep learning model that can predict motion before its onset, and thereby deliver the sensory stimuli in a timely manner for BCI-NFT applications. To this end, the main objective of the current study was to design and evaluate a Multi-layer Perceptron Neural Network (MLP-NN). Movement-related cortical potentials (MRCP) during planning and execution of ankle dorsiflexion was used to train the model to classify dorsiflexion planning vs. rest. The accuracy and reliability of the model was evaluated offline using data from eight healthy individuals (age: 26.3 ± 7.6 years). First, we evaluated three different epoching strategies for defining our 2 classes, to identify the one which best discriminated rest from dorsiflexion. The best model accuracy for predicting ankle dorsiflexion from EEG before movement execution was 84.7%. Second, the effect of various spatial filters on the model accuracy was evaluated, demonstrating that the spatial filtering had minimal effect on model accuracy and reliability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sw123完成签到 ,获得积分10
1秒前
周文凯发布了新的文献求助10
2秒前
2秒前
2秒前
4秒前
啊啊啊啊发布了新的文献求助10
4秒前
CipherSage应助怂宝儿采纳,获得10
5秒前
忧郁忆枫完成签到 ,获得积分10
5秒前
小甑完成签到,获得积分10
6秒前
香蕉诗蕊举报积极晓山求助涉嫌违规
6秒前
6秒前
诺hn完成签到 ,获得积分10
6秒前
酷波er应助伯克利芙蓉王采纳,获得10
7秒前
所所应助包振宏采纳,获得10
7秒前
朱加德发布了新的文献求助10
7秒前
樱桃发布了新的文献求助10
9秒前
学术妙蛙种子完成签到,获得积分20
9秒前
蔡丽发布了新的文献求助10
11秒前
12秒前
顺顺发布了新的文献求助10
12秒前
科目三应助樱桃采纳,获得10
16秒前
袁瑞发布了新的文献求助10
17秒前
akko完成签到,获得积分10
17秒前
珺珺要努力呀完成签到 ,获得积分10
19秒前
yfxf应助akko采纳,获得10
21秒前
22秒前
22秒前
顾矜应助朱加德采纳,获得10
23秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
宋二庆完成签到,获得积分10
25秒前
青火完成签到,获得积分10
26秒前
zj发布了新的文献求助10
27秒前
dzjin发布了新的文献求助10
28秒前
少女情怀总是梦完成签到,获得积分10
28秒前
28秒前
29秒前
donglimuxue完成签到,获得积分10
30秒前
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538014
求助须知:如何正确求助?哪些是违规求助? 4625297
关于积分的说明 14595495
捐赠科研通 4565819
什么是DOI,文献DOI怎么找? 2502789
邀请新用户注册赠送积分活动 1481135
关于科研通互助平台的介绍 1452360