Towards Adaptive Information Fusion in Graph Convolutional Networks

计算机科学 图形 节点(物理) 人工智能 网络拓扑 拓扑(电路) 机器学习 理论计算机科学 数学 组合数学 计算机网络 工程类 结构工程
作者
Meiqi Zhu,Xiao Wang,Chuan Shi,Yibo Li,Junping Du
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (12): 13055-13069 被引量:2
标识
DOI:10.1109/tkde.2023.3271772
摘要

Graph Convolutional Networks (GCNs) have gained great popularity in tackling various analytic tasks on graph and network data. However, some recent studies raise concerns about whether GCNs can optimally integrate node features and topological structures in a complex graph. In this paper, we first present an experimental investigation. Surprisingly, our experimental results clearly show that the capability of the state-of-the-art GCNs in fusing node features and topological structures is distant from optimal or even satisfactory. The weakness may severely hinder the capability of GCNs in some classification tasks, since GCNs may not be able to adaptively learn some deep correlation information between topological structures and node features. Can we remedy the weakness and design a new type of GCNs that can retain the advantages of the state-of-the-art GCNs and, at the same time, enhance the capability of fusing topological structures and node features substantially? We tackle the challenge and propose an A daptive M ulti-channel G raph C onvolutional N etwork for semi-supervised classification ( AM-GCN ). The central idea is that we extract the specific and common embeddings from node features, topological structures, and their combinations simultaneously, and use the attention mechanism to learn adaptive importance weights of the embeddings. However, considering that the input topology and feature structure in AM-GCN are still predefined and fixed, once the properties of graph structures are not consistent with tasks, the fusion performance of AM-GCN will be hindered from the beginning. Therefore, we need to adjust the structure and further propose the L abel P ropagation guided M ulti-channel G raph C onvolutional N etwork ( LPM-GCN ). LPM-GCN introduces edge weights learning on both topology and feature spaces to improve structural homophily, which can better promote the fusion process of graph convolutional networks. Our extensive experiments on benchmark data sets clearly show that our proposed models extract the most correlated information from both node features and topological structures substantially, and improves the classification accuracy with a clear margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dusk完成签到,获得积分10
刚刚
72发布了新的文献求助10
刚刚
赵勇完成签到 ,获得积分10
刚刚
丘比特应助新新采纳,获得30
1秒前
KK发布了新的文献求助50
1秒前
1498626960发布了新的文献求助10
1秒前
vv发布了新的文献求助10
1秒前
思源应助骑驴找马采纳,获得10
1秒前
小兑完成签到,获得积分10
1秒前
讠哈哈发布了新的文献求助10
2秒前
2秒前
3秒前
最棒哒发布了新的文献求助20
3秒前
心灵美的石头完成签到,获得积分10
3秒前
Jackie完成签到,获得积分10
3秒前
James发布了新的文献求助10
3秒前
3秒前
my发布了新的文献求助10
4秒前
庾储完成签到,获得积分10
5秒前
5秒前
Haley发布了新的文献求助10
5秒前
6秒前
YYYYYL发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
李华完成签到,获得积分10
7秒前
Debrolie发布了新的文献求助10
7秒前
ultraviolet完成签到,获得积分20
8秒前
一只橙子完成签到,获得积分10
8秒前
Treasure完成签到,获得积分10
8秒前
9秒前
老鱼娜娜发布了新的文献求助10
9秒前
青衣完成签到,获得积分10
9秒前
9秒前
9秒前
小宝发布了新的文献求助10
10秒前
1498626960完成签到,获得积分20
10秒前
10秒前
11秒前
竹外桃花发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951532
求助须知:如何正确求助?哪些是违规求助? 3496928
关于积分的说明 11085323
捐赠科研通 3227364
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868444
科研通“疑难数据库(出版商)”最低求助积分说明 801139