Towards Adaptive Information Fusion in Graph Convolutional Networks

计算机科学 图形 节点(物理) 人工智能 网络拓扑 拓扑(电路) 机器学习 理论计算机科学 数学 组合数学 计算机网络 工程类 结构工程
作者
Meiqi Zhu,Xiao Wang,Chuan Shi,Yibo Li,Junping Du
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (12): 13055-13069 被引量:2
标识
DOI:10.1109/tkde.2023.3271772
摘要

Graph Convolutional Networks (GCNs) have gained great popularity in tackling various analytic tasks on graph and network data. However, some recent studies raise concerns about whether GCNs can optimally integrate node features and topological structures in a complex graph. In this paper, we first present an experimental investigation. Surprisingly, our experimental results clearly show that the capability of the state-of-the-art GCNs in fusing node features and topological structures is distant from optimal or even satisfactory. The weakness may severely hinder the capability of GCNs in some classification tasks, since GCNs may not be able to adaptively learn some deep correlation information between topological structures and node features. Can we remedy the weakness and design a new type of GCNs that can retain the advantages of the state-of-the-art GCNs and, at the same time, enhance the capability of fusing topological structures and node features substantially? We tackle the challenge and propose an A daptive M ulti-channel G raph C onvolutional N etwork for semi-supervised classification ( AM-GCN ). The central idea is that we extract the specific and common embeddings from node features, topological structures, and their combinations simultaneously, and use the attention mechanism to learn adaptive importance weights of the embeddings. However, considering that the input topology and feature structure in AM-GCN are still predefined and fixed, once the properties of graph structures are not consistent with tasks, the fusion performance of AM-GCN will be hindered from the beginning. Therefore, we need to adjust the structure and further propose the L abel P ropagation guided M ulti-channel G raph C onvolutional N etwork ( LPM-GCN ). LPM-GCN introduces edge weights learning on both topology and feature spaces to improve structural homophily, which can better promote the fusion process of graph convolutional networks. Our extensive experiments on benchmark data sets clearly show that our proposed models extract the most correlated information from both node features and topological structures substantially, and improves the classification accuracy with a clear margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
香蕉觅云应助yuan采纳,获得10
3秒前
香蕉觅云应助温暖的复天采纳,获得30
3秒前
卿xx完成签到,获得积分10
3秒前
1232完成签到 ,获得积分10
4秒前
木瓜完成签到 ,获得积分10
4秒前
wgnahoa发布了新的文献求助10
4秒前
5秒前
阳光的凌雪完成签到 ,获得积分10
6秒前
大个应助女爰舍予采纳,获得10
6秒前
马龙完成签到,获得积分10
6秒前
Orange应助诸忆雪采纳,获得10
7秒前
8秒前
8秒前
一天三个蛋完成签到,获得积分10
8秒前
ww发布了新的文献求助10
9秒前
9秒前
科研工作者完成签到,获得积分10
12秒前
13秒前
姚哈哈发布了新的文献求助10
14秒前
14秒前
14秒前
居正完成签到,获得积分10
15秒前
16秒前
16秒前
感动的飞莲完成签到 ,获得积分10
17秒前
17秒前
natianhao发布了新的文献求助10
17秒前
兰晋彤完成签到,获得积分20
18秒前
斯文的以亦完成签到,获得积分10
18秒前
huh完成签到,获得积分10
19秒前
aga发布了新的文献求助10
19秒前
20秒前
20秒前
肖肖发布了新的文献求助10
20秒前
斯文败类应助季夏采纳,获得10
20秒前
21秒前
hhee完成签到 ,获得积分10
21秒前
兰晋彤发布了新的文献求助10
21秒前
董先生完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307165
求助须知:如何正确求助?哪些是违规求助? 4452863
关于积分的说明 13855440
捐赠科研通 4340491
什么是DOI,文献DOI怎么找? 2383191
邀请新用户注册赠送积分活动 1378035
关于科研通互助平台的介绍 1345875