Towards Adaptive Information Fusion in Graph Convolutional Networks

计算机科学 图形 节点(物理) 人工智能 网络拓扑 拓扑(电路) 机器学习 理论计算机科学 数学 组合数学 计算机网络 工程类 结构工程
作者
Meiqi Zhu,Xiao Wang,Chuan Shi,Yibo Li,Junping Du
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (12): 13055-13069 被引量:2
标识
DOI:10.1109/tkde.2023.3271772
摘要

Graph Convolutional Networks (GCNs) have gained great popularity in tackling various analytic tasks on graph and network data. However, some recent studies raise concerns about whether GCNs can optimally integrate node features and topological structures in a complex graph. In this paper, we first present an experimental investigation. Surprisingly, our experimental results clearly show that the capability of the state-of-the-art GCNs in fusing node features and topological structures is distant from optimal or even satisfactory. The weakness may severely hinder the capability of GCNs in some classification tasks, since GCNs may not be able to adaptively learn some deep correlation information between topological structures and node features. Can we remedy the weakness and design a new type of GCNs that can retain the advantages of the state-of-the-art GCNs and, at the same time, enhance the capability of fusing topological structures and node features substantially? We tackle the challenge and propose an A daptive M ulti-channel G raph C onvolutional N etwork for semi-supervised classification ( AM-GCN ). The central idea is that we extract the specific and common embeddings from node features, topological structures, and their combinations simultaneously, and use the attention mechanism to learn adaptive importance weights of the embeddings. However, considering that the input topology and feature structure in AM-GCN are still predefined and fixed, once the properties of graph structures are not consistent with tasks, the fusion performance of AM-GCN will be hindered from the beginning. Therefore, we need to adjust the structure and further propose the L abel P ropagation guided M ulti-channel G raph C onvolutional N etwork ( LPM-GCN ). LPM-GCN introduces edge weights learning on both topology and feature spaces to improve structural homophily, which can better promote the fusion process of graph convolutional networks. Our extensive experiments on benchmark data sets clearly show that our proposed models extract the most correlated information from both node features and topological structures substantially, and improves the classification accuracy with a clear margin.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沙脑完成签到 ,获得积分10
2秒前
风中追风完成签到 ,获得积分10
2秒前
SINET完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
10秒前
研友_8KeVBn完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
29秒前
30秒前
30秒前
mol完成签到 ,获得积分10
35秒前
齐欢完成签到 ,获得积分10
36秒前
roundtree完成签到 ,获得积分0
42秒前
量子星尘发布了新的文献求助10
42秒前
温暖完成签到 ,获得积分10
45秒前
科研通AI6应助科研通管家采纳,获得10
53秒前
科研通AI6应助科研通管家采纳,获得10
53秒前
科研通AI6应助科研通管家采纳,获得10
53秒前
科研通AI6应助科研通管家采纳,获得10
53秒前
科研通AI6应助科研通管家采纳,获得10
53秒前
量子星尘发布了新的文献求助10
53秒前
oleskarabach完成签到,获得积分20
56秒前
57秒前
娅娃儿完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
糖宝完成签到 ,获得积分0
1分钟前
大卫完成签到,获得积分20
1分钟前
月下荷花完成签到 ,获得积分10
1分钟前
颜小喵完成签到 ,获得积分10
1分钟前
大卫发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
CHEN完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
timeless完成签到 ,获得积分10
1分钟前
然大宝完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671500
求助须知:如何正确求助?哪些是违规求助? 4918822
关于积分的说明 15134852
捐赠科研通 4830227
什么是DOI,文献DOI怎么找? 2586973
邀请新用户注册赠送积分活动 1540582
关于科研通互助平台的介绍 1498856