Towards Adaptive Information Fusion in Graph Convolutional Networks

计算机科学 图形 节点(物理) 人工智能 网络拓扑 拓扑(电路) 机器学习 理论计算机科学 数学 组合数学 计算机网络 工程类 结构工程
作者
Meiqi Zhu,Xiao Wang,Chuan Shi,Yibo Li,Junping Du
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (12): 13055-13069 被引量:1
标识
DOI:10.1109/tkde.2023.3271772
摘要

Graph Convolutional Networks (GCNs) have gained great popularity in tackling various analytic tasks on graph and network data. However, some recent studies raise concerns about whether GCNs can optimally integrate node features and topological structures in a complex graph. In this paper, we first present an experimental investigation. Surprisingly, our experimental results clearly show that the capability of the state-of-the-art GCNs in fusing node features and topological structures is distant from optimal or even satisfactory. The weakness may severely hinder the capability of GCNs in some classification tasks, since GCNs may not be able to adaptively learn some deep correlation information between topological structures and node features. Can we remedy the weakness and design a new type of GCNs that can retain the advantages of the state-of-the-art GCNs and, at the same time, enhance the capability of fusing topological structures and node features substantially? We tackle the challenge and propose an A daptive M ulti-channel G raph C onvolutional N etwork for semi-supervised classification ( AM-GCN ). The central idea is that we extract the specific and common embeddings from node features, topological structures, and their combinations simultaneously, and use the attention mechanism to learn adaptive importance weights of the embeddings. However, considering that the input topology and feature structure in AM-GCN are still predefined and fixed, once the properties of graph structures are not consistent with tasks, the fusion performance of AM-GCN will be hindered from the beginning. Therefore, we need to adjust the structure and further propose the L abel P ropagation guided M ulti-channel G raph C onvolutional N etwork ( LPM-GCN ). LPM-GCN introduces edge weights learning on both topology and feature spaces to improve structural homophily, which can better promote the fusion process of graph convolutional networks. Our extensive experiments on benchmark data sets clearly show that our proposed models extract the most correlated information from both node features and topological structures substantially, and improves the classification accuracy with a clear margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ASYHJM完成签到,获得积分10
2秒前
3秒前
3秒前
LRK完成签到,获得积分20
4秒前
wanci应助222采纳,获得10
4秒前
4秒前
董吉发布了新的文献求助10
8秒前
爱德华123发布了新的文献求助10
9秒前
善意小霸王完成签到,获得积分20
10秒前
斯文败类应助Yvette采纳,获得10
11秒前
老肖应助Mars1998采纳,获得10
11秒前
12秒前
文艺初雪应助含蓄元冬采纳,获得10
12秒前
12秒前
俭朴的誉完成签到 ,获得积分10
14秒前
万能图书馆应助成就幻枫采纳,获得10
17秒前
来与去的风完成签到,获得积分20
18秒前
结实采蓝发布了新的文献求助10
18秒前
自觉画笔完成签到 ,获得积分10
18秒前
19秒前
19秒前
20秒前
20秒前
ll完成签到,获得积分10
21秒前
Jasper应助现代飞鸟采纳,获得10
21秒前
砂浆黏你完成签到,获得积分10
22秒前
阿尼亚发布了新的文献求助10
22秒前
两粒葱花儿完成签到,获得积分10
23秒前
Dsivan发布了新的文献求助10
23秒前
24秒前
科研通AI2S应助俏皮的凝珍采纳,获得10
25秒前
yggmdggr发布了新的文献求助10
26秒前
Ellen完成签到,获得积分10
26秒前
Diss发布了新的文献求助10
26秒前
27秒前
Dsivan完成签到,获得积分10
27秒前
27秒前
28秒前
31秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139150
求助须知:如何正确求助?哪些是违规求助? 2790122
关于积分的说明 7793698
捐赠科研通 2446483
什么是DOI,文献DOI怎么找? 1301209
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601102