亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Do Financial Investment, Disciplinary Differences, and Level of Development Impact on the Efficiency of Resource Allocation in Higher Education: Evidence from China

数据包络分析 投资(军事) 资源配置 中国 经济 农业生产力 农业 生产力 环境经济学 业务 经济增长 政治学 管理 地理 数学优化 数学 政治 法学 考古
作者
Biao Chen,Yan Chen,Xianghua Qu,Wan‐Yu Huang,Panyu Wang
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (9): 7418-7418 被引量:1
标识
DOI:10.3390/su15097418
摘要

Optimizing the allocation of university resources to improve the efficiency of inputs and outputs is an important issue for the high-quality development of universities. In recent years, China has become an important growth pole for the development of global higher education. In particular, Chinese agricultural universities, with their distinctive disciplinary characteristics and outstanding professional advantages, have made important contributions to the sustainable development of agricultural education around the world. In contrast, academic research on the efficiency of resource allocation in Chinese agricultural universities is very limited. To fill this gap, this study was guided by econometrics and took high-level agricultural universities in China as the research object to measure the effects of financial investment, disciplinary differences, and development level on the level of resource allocation efficiency of universities. With the help of a data envelopment model (DEA) and a Malmquist index decomposition model, we found that the overall level of resource allocation efficiency in the sample universities was high, but there were great disparities in resource input–output effectiveness between universities. In many universities, marginal inputs exceeded marginal outputs, resulting in input redundancy and resource wastage. In addition, this study shows that for high-level agricultural universities, the regression of capital input technology is preventing a sustained increase in productivity, which places the total factor productivity of resource allocation in a diminishing state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OG发布了新的文献求助20
3秒前
慕青应助叶思言采纳,获得10
3秒前
13秒前
科研通AI2S应助XiYang采纳,获得10
21秒前
23秒前
间质发布了新的文献求助10
29秒前
Geist完成签到 ,获得积分10
35秒前
松子的ee完成签到 ,获得积分10
43秒前
小刘完成签到,获得积分10
1分钟前
李爱国应助无语的棉花糖采纳,获得50
1分钟前
共享精神应助斯文哈密瓜采纳,获得10
1分钟前
Jason完成签到 ,获得积分10
1分钟前
1分钟前
Ricochet完成签到,获得积分10
1分钟前
Very完成签到 ,获得积分20
1分钟前
1分钟前
慕青应助xuan采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
驿寄梅花发布了新的文献求助10
1分钟前
Jasper应助啵啵龙采纳,获得10
2分钟前
2分钟前
谦让傲菡完成签到 ,获得积分10
2分钟前
2分钟前
Owen应助驿寄梅花采纳,获得10
2分钟前
xuan发布了新的文献求助10
2分钟前
2分钟前
2分钟前
不如一默发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
啵啵龙发布了新的文献求助10
2分钟前
努力乘凉发布了新的文献求助10
2分钟前
2分钟前
CipherSage应助不如一默采纳,获得10
2分钟前
fane发布了新的文献求助30
2分钟前
orixero应助斯文哈密瓜采纳,获得10
2分钟前
Omni完成签到,获得积分10
2分钟前
努力乘凉完成签到 ,获得积分20
2分钟前
小小富完成签到,获得积分10
2分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307345
求助须知:如何正确求助?哪些是违规求助? 2941006
关于积分的说明 8500089
捐赠科研通 2615318
什么是DOI,文献DOI怎么找? 1428830
科研通“疑难数据库(出版商)”最低求助积分说明 663581
邀请新用户注册赠送积分活动 648410