Traj2Traj: A road network constrained spatiotemporal interpolation model for traffic trajectory restoration

弹道 计算机科学 插值(计算机图形学) 匹配(统计) 全球定位系统 约束(计算机辅助设计) 数据挖掘 实时计算 人工智能 工程类 运动(物理) 数学 统计 机械工程 物理 电信 天文
作者
Lyuchao Liao,Yuyuan Lin,Weifeng Li,Fumin Zou,Linsen Luo
出处
期刊:Transactions in Gis [Wiley]
卷期号:27 (4): 1021-1042 被引量:1
标识
DOI:10.1111/tgis.13048
摘要

Abstract In transportation, the trajectory data generated by various mobile vehicles equipped with GPS modules are essential for traffic information mining. However, collecting trajectory data is susceptible to various factors, resulting in the lack and even error of the data. Missing trajectory data could not correctly reflect the actual situation and also affect the subsequent research work related to the trajectory. Although increasing efforts are paid to restore missing trajectory data, it still faces many challenges: (1) the difficulty of data restoration because traffic trajectories are unstructured spatiotemporal data and show complex patterns; and (2) the difficulty of improving trajectory restoration efficiency because traditional trajectory interpolation is computationally arduous. To address these issues, a novel road network constrained spatiotemporal interpolation model, namely Traj2Traj, is proposed in this work to restore the missing traffic trajectory data. The model is constructed with a seq2seq network and integrates a potential factor module to extend environmental factors. Significantly, the model uses a spatiotemporal attention mechanism with the road network constraint to mine the latent information in time and space dimensions from massive trajectory data. The Traj2Traj model completes the road‐level restoration according to the entire trajectory information. We present the first attempt to omit the map‐matching task when the trajectory is restored to solve the time‐consuming problem of map matching. Extensive experiments conducted on the provincial vehicle GPS data sets from April 2018 to June 2018 provided by the Fujian Provincial Department of Transportation show that the Traj2Traj model outperforms the state‐of‐the‐art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LR完成签到,获得积分10
1秒前
纯洁的晟宝儿完成签到,获得积分20
2秒前
Lucas应助公司账号2采纳,获得30
4秒前
犹豫海白完成签到,获得积分10
6秒前
田様应助就在咫尺之间采纳,获得10
7秒前
8秒前
lewis17发布了新的文献求助10
9秒前
张润琦完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助150
10秒前
521发布了新的文献求助10
11秒前
别不开星完成签到,获得积分10
13秒前
大个应助yongtao采纳,获得10
13秒前
14秒前
Rez完成签到,获得积分10
15秒前
15秒前
LYSM应助cqwswfl采纳,获得10
16秒前
16秒前
19秒前
C胖胖完成签到,获得积分10
19秒前
魏笑白发布了新的文献求助30
19秒前
21秒前
22秒前
nzh19802完成签到,获得积分10
23秒前
orang完成签到,获得积分10
23秒前
鱼儿完成签到,获得积分10
23秒前
英姑应助521采纳,获得10
24秒前
852应助坚强的严青采纳,获得10
24秒前
crystaler发布了新的文献求助10
25秒前
棋士应助科研通管家采纳,获得10
28秒前
研友_VZG7GZ应助科研通管家采纳,获得10
29秒前
ED应助科研通管家采纳,获得10
29秒前
FOB应助科研通管家采纳,获得10
29秒前
Ava应助科研通管家采纳,获得10
29秒前
超级南风应助科研通管家采纳,获得10
29秒前
FOB应助科研通管家采纳,获得10
29秒前
打打应助科研通管家采纳,获得10
29秒前
Orange应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954395
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099177
捐赠科研通 3230855
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801673